Is a real-time multiplayer game using Google App Engine feasible? - google-app-engine

I am currently developing a real-time multiplayer game, and have been evaluating various cloud-based hosting solutions. I am unsure whether App Engine fits my needs, and would be grateful for any feedback.
In essence, I want the system to work like this: Player A calculates round n, and generates a hash out of the game state at the end of that round. He then sends his commands for that round, and the hash, as a http POST to the server. Player B does the same thing, in parallel.
The server, while handling the POST from a player, first writes the received hash code to the memcache. If the hash from the other player is not yet in the memcache, it waits and periodically checks the memcache for the other players hash. As soon as both hashes are in the memcache, it compares them for equality. If they are equal, the server sends the commands of each player to the respectively other one as the http response.
A round like that should last around half a second, meaning two requests per player per second.
Of course, this way of doing it will only work if there are at least two instances of the application running, as two requests must be dealt with in parallel. Also, the memory cache must be consistent over all instances, be fairly reliable, and update immediately.
I cannot use XMPP because I want my game to be able to run within restricted networks, so it has to be limited to http on port 80.
Is there a way to enforce that two instances of the app are always running? Are there glaringly obvious flaws in my design? Do you think an architecture like this might work on App Engine? If not, what cloud based solution would you suggest?

I believe this could work. The key API for you to learn about / test would probably be the Channel API. That is what would allow back and forth communication between the client and server.
The next issue to worry about would be memcache. In general, it is reliable, but in the strictest sense we are supposed to assume that memcached data could disappear at any time.
If you decide that you can't risk losing the data like that, then you need to persist it in the datastore, which means you will have to experiment to make sure you can sustain 2 moves per turn. I think this is possible, but not trivially so. If you had said 1 move every 3 seconds I would say "no problem." But multiple updates to one entity per second start to bump up against the practical limit on writes per second, especially if they are transactional.
Having multiple instances running will not be a problem - you can pay to keep instances warm if necessary.

Related

Best implementation of turn-based access on App Engine?

I am trying to implement a 2-player turn-based game with a GAE backend. The first thing this game requires is a very simple match making system that operates like this:
User A asks the backend for a match. The back ends tells him to come back later
User B asks the backend for a match. He will be matched with A.
User C asks the backend for a match. The back ends tells him to come back later
User D asks the backend for a match. He will be matched with C.
and so on...
(edit: my assumption is that if I can figure this one out, most other operation i a turn based game can use the same implementation)
This can be done quite easily in Apple Gamecenter and Xbox Live, however I would rather implement this on an open and platform independent backend like GAE. After some research, I have found the following options for a GAE implementation:
use memcache. However, there is no guarantee that the memcache is synchronized across different instances. I did some tests and could actually see match request disappearing due to memcache mis-synchronization.
Harden memcache with Sharding Counters. This does not always solve the multiple instance problem and mayabe results in high memcache quota usage.
Use memcache with Compare and Set. Does not solve the multiple instance problem when used as a mutex.
task queues. I have no idea how to use these but someone mentioned as a possible solution. However, I am afraid that queues will eat me GAE quota very quickly.
push queues. Same as above.
transaction. Same as above. Also probably very expensive.
channels. Same as above. Also probably very expensive.
Given that the match making is a very basic operation in online games, I cannot be the first one encountering this. Hence my questions:
Do you know of any safe mechanism for match making?
If multiple solutions exist, which is the cheapest (in terms of GAE quota usage) solution?
You could accomplish this using a cron tasks in a scheme like this:
define MatchRequest:
requestor = db.StringProperty()
opponent = db.StringProperty(default = '')
User A asks for a match, a MatchRequest entity is created with A as the requestor and the opponent blank.
User A polls to see when the opponent field has been filled.
User B asks for a match, a MatchRequest entity is created with B as as the requestor.
User B pools to see when the opponent field has been filled.
A cron job that runs every 20 seconds? or so runs:
Grab all MatchRequest where opponent == ''
Make all appropriate matches
Put all the MatchRequests as a transaction
Now when A and B poll next they will see that they they have an opponent.
According to the GAE docs on crons free apps can have up to 20 free cron tasks. The computation required for these crons for a small amount of users should be small.
This would be a safe way but I'm not sure if it is the cheapest way. It's also pretty easy to implement.

Google App Engine and data replication with multiple instances

I'm using the Google App Engine as the backend for an iOS game that was just released.
Through that act of playing the game, players create levels and then those are shared with their friends and the world at large. GAE is used to store and retrieve those levels. GAE also Manages player's high scores since they are more complex than Game Center can handle.
As a whole, GAE works great. I like how GAE spins up new instances as they are needed without me having to constantly monitor load. For this game, GAE is running around 10 instance and serving around 8 queries a second.
But there is a small problem.
I've noticed that sometimes players will get on the high score table twice. This should not be possible since I remove any old scores before putting up the new scores (this is done in one query to GAE).
After some testing and poking around, it seems that what is happening is that a player will get a high score and instance 1 handles the removing of the old score and the adding of the new one. The player then gets a new high score, but this time instance 4 is the one that handles the request and it doesn't know about the other score yet.
At their fastest, it might take a player 10 seconds to get a new high score. It was my understanding that the replication of data only took 2 or 3 seconds.
I never saw this problem during testing because load rarely caused 2 instances to be started.
Does this seem like a plausible explanation for what is happening and how data is stored for each instance?
Is there a way to guarantee that data added, deleted or altered in one instance will be available in another? High scores are not "mission critical", so I'm not too worried about it, but I would like to use GAE for some more complex situations where it is very important that data is consistent.
Is that possible with GAE, or should I be looking at other solutions?
It is possible to guarantee that data will be consistent across all data centers (strong consistency). You need to use ancestor queries to achieve it. However, doing so poses a restriction on how many write per seconds you can achieve. Currently the limit is 1 write per second.
If the write limit is too slow for you, one alternative is to add a cache layer. So you will still be using the eventual consistency model, but you will mix those results with the ones in memcache.
See the doc Structuring for Strong Consistency for further details.

What is a Google App Engine instance?

I am trying to estimate the monthly costs for having GAE for in-app store and I do not really understand what is an instance and what can I do within one instance.
Can I just have one instance with multiple threads to deal with multiple clients? And as I have 28 hours of free instance per app per day (http://cloud.google.com/pricing/), does it mean that I would not pay for my server app running all the time?
An instance is an instance of a virtual server, running your code, that is able to serve requests to clients. This is usually done in parallel (Goroutines, Java threads, Python threads with 2.7) for most efficient usage of available resources.
Response times depends on what you're doing in your code, and it's usually IO dependent. If you have a waterfall of serial database lookups, it takes longer than if you only have a single multiget and perhaps an async write.
Part of the deal with GAE is that Google handles the elasticity for you. If there are a lot of connections waiting, new instances will start as needed (until your quota is exhausted). That means it can be difficult to estimate cost upfront, because you don't know exactly how efficient your code is and how much resources you'll need. I recommend a scheme where more usage means more income, and income per request is higher than cost per request. :)
You can tweak settings, saying you want requests to wait in queue, or always have a couple of spare instances ready to serve new requests, which will affect cost for you and response times for users.
In an IaaS scenario you could say that you will use five instances and that's the cost, but in reality you might need only 1 at night local time, and 25 the rest of the day, which means your users would most likely see dropped connections or otherwise have a negative user experience.
A free instance is normally able to handle test traffic during development without exhausting the quota.
Well AppEngine may decide you need to have more than one instance running to handle the requests and so will start another one. You won't be able to limit it to one running instance. In fact, it's sometimes unclear why AE starts another instance when it seems like the requests are low, but it will if it decides it needs another warm instance to be ready to handle requests if the serving instance(s) are too near their limit.

working with new channel creation limits

Google app engine seems to have recently made a huge decrease in free quotas for channel creation from 8640 to 100 per day. I would appreciate some suggestions for optimizing channel creation, for a hobby project where I am unwilling to use the paid plans.
It is specifically mentioned in the docs that there can be only one client per channel ID. It would help if there were a way around this, even if it were only for multiple clients on one computer (such as multiple tabs)
It occurred to me I might be able to simulate channel functionality by repeatedly sending XHR requests to the server to check for new messages, therefore bypassing limits. However, I fear this method might be too slow. Are there any existing libraries that work on this principle?
One Client per Channel
There's not an easy way around the one client per channel ID limitation, unfortunately. We actually allow two, but this is to handle the case where a user refreshes his page, not for actual fan-out.
That said, you could certainly implement your own workaround for this. One trick I've seen is to use cookies to communicate between browser tabs. Then you can elect one tab the "owner" of the channel and fan out data via cookies. See this question for info on how to implement the inter-tab communication: Javascript communication between browser tabs/windows
Polling vs. Channel
You could poll instead of using the Channel API if you're willing to accept some performance trade-offs. Channel API deliver speed is on the order of 100-200ms; if you could accept 500ms average then you could poll every second. Depending on the type of data you're sending, and how much you can fit in memcache, this might be a workable solution. My guess is your biggest problem is going to be instance-hours.
For example, if you have, say, 100 clients you'll be looking at 100qps. You should experiment and see if you can serve 100 requests in a second for the data you need to serve without spinning up a second instance. If not, keep increasing your latency (ie., decreasing your polling frequency) until you get to 1 instance able to serve your requests.
Hope that helps.

how many users in a GAE instance?

I'm using the Python 2.5 runtime on Google App Engine. Needless to say I'm a bit worried about the new costs so I want to get a better idea of what kind of traffic volume I will experience.
If 10 users simultaneously access my application at myapplication.appspot.com, will that spawn 10 instances?
If no, how many users in an instance? Is it even measured that way?
I've already looked at http://code.google.com/appengine/docs/adminconsole/instances.html but I just wanted to make sure that my interpretation is correct.
"Users" is a fairly meaningless term from an HTTP point of view. What's important is how many requests you can serve in a given time interval. This depends primarily on how long your app takes to serve a given request. Obviously, if it takes 200 milliseconds for you to serve a request, then one instance can serve at most 5 requests per second.
When a request is handled by App Engine, it is added to a queue. Any time an instance is available to do work, it takes the oldest item from the queue and serves that request. If the time that a request has been waiting in the queue ('pending latency') is more than the threshold you set in your admin console, the scheduler will start up another instance and start sending requests to it.
This is grossly simplified, obviously, but gives you a broad idea how the scheduler works.
First, no.
An instance per user is unreasonable and doesn't happen.
So you're asking how does my app scale to more instances? Depends on the load.
If you have much much requests per second then you'll get (automatically) another instance so the load is distributed.
That's the core idea behind App Engine.

Resources