Sokoban solver, tips [closed] - artificial-intelligence

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I have to do a Sokoban solver (http://en.wikipedia.org/wiki/Sokoban).
Have you ever done one? I am searching for tips, not for code. Like "you may use the IDA* alg" or "I used that heuristic and it was quite good" or "I use that tech no avoid deadlocks".
Basically I want to write on a paper the strategy before writing any code.

I have written my Master's thesis on Sokoban algorithms. I aimed to provide a good overview on the techniques used in Sokoban solvers. It does not provide definite answers, but might provide a good starting point for someone interested in writing a Sokoban solver.
http://weetu.net/Timo-Virkkala-Solving-Sokoban-Masters-Thesis.pdf

Terms
field - the level, whole playing area of the current game.
position - a phase, set-up in the field.
final position - a position in which no turn is possible - either the goal or a deadlock.
box - same as crate.
Theory
Just a little bit of logic - it seems obvious but we'll use it in the implementation part.
So - about every game of Sokoban, we can say that it is one of these:
solvable, unsolved - in the process of solving
solvable, solved - the goal
unsolvable, unsolved - if our implementation yields no results, and there are no more possible moves / combinations of moves
Now - a Sokoban game consists of turns that are:
moves - the character can move in an area defined by walls and/or boxes, this area is smaller or equal (if not counting the walls, and there are no boxes) to the whole playing area - however, moving the character around the field makes no difference except score, which is irrelevant for the actual solution - let's ignore it for now
pushes - pushing the boxes is much more important, and can potentially lead to our goal - solving the field - by pushing the boxes at their respective goals
A box can be:
in-goal - most likely this box does not need to be moved, and some rules can prohibit a box from moving when at a goal position (very unusual)
pushable - in 1 to 4 directions
unpushable, not at goal
blocked by 2 walls - the current position is unsolvable no matter what
other - we will get to this box later - for now a crate stands in our way
Process
This is the step-by-step process we will use in solving (definitions underneath):
populate possibleTurnsn with every directly accessible push (pushable or in-goal) in the current position, with player at the current place
take the first item in possibleTurnsn, remove it and execute it
see if the current position:
is final - goal - solved, do not do anything
is final - deadlock - this turn led to a deadlock, don't populate it anymore, go back to 2. step, n stays the same
is not final - increment n and populate possibleTurnsn with possible turns in this position
Definitions:
possibleTurnsx - a two dimensional array, or an array of arrays - the x defines the "depth" of the turns
n - in the beginning is zero, will be incremented in the execution of the algorithm above
Tips
Finally - the process above will leave you with a combination of turns that will leave to a solved position. Last thing to do is to use an algorithm like A* to determine the shortest route between these turns / pushes, to maximize the speed and score, minimize number of in-game turns.

You can create a brute force solver that tries to move your man in every possible direction. By using recursion (or a stack) you can track back your steps if a solution is not found.
A* probably won't do you any good, because you don't have to find your way through a maze, but also need to move the boxes. This means you may need to take a step back in the same direction you came from after moving a box. So for every step you need to evaluate all directions, including the one you came from. That is, unless you didn't move a box in the previous step.
[edit]
You could use A* to make it a little smarter; to find a way from your current position to any of the positions you can move a box from. That would probably make your solution more efficient, because you won't have to track all positions inbetween, but only the positions from the last box you pushed to the next box you'll push.

Related

Does Alpha Beta / minimax require that each node be a full copy of the gameboard?

This is not a language-specific question, but for the sake of conversation, I currently work in C# 7.
Over the years I've successfully implemented the Alpha Beta pruning algorithm (even in PASCAL, 35 years ago :)
Each time, I've created semi-deep-copies (discussed below) of the game state which is recursed for each node. I've often wondered if this is necessary and if perhaps I'm not truly understanding the algorithm.
The interweb is full of requests for help for TicTacToe, which makes me think that this must be a common school assignment question - which kinda clogs searches on this fairly basic topic.
Semi-deep-copies ... it appears to me that each node should know:
the full state of the board
the player whose turn it is
the state of play - ie: { playing, Player1 win, Player2 win, draw }
My question is: does each node need its own copy of the board? ... for example Chess has 8x8 grid ... is there something more subtle to the algorithm, or do these nodes each need their own snap-shot of the board state? Is there some cool way (other than copy and apply-possible-move) that nodes can use to derive their state from their parent?
Perhaps someone can explain or point to a "read this, dummy" post, or just confirm that I need to make these instances, as I've attempted to describe, with each recursive call having its own in-memory copy of the game board.
I realize that over the last few decades, memory has become cheap... but combinatorial-explosion is still the main topic. Cheers.
I am not sure if this answers your question. But could you instead of making a copy each turn do the move, make the recursive call, and then undo the move instead? Something like:
board.make_move(move)
eval = minimax(board, ....)
board.unmake_move(move)

nurbs straight line between first two control points

I have been working on a piece of code that takes in a curve (cloud of points with x,y coordinates only for now) and parameterises it to approximate the given shape with nurbs. The issue I have is that the resultant parameterised curve is linear(!) between the first two control points and only between the other ones approximates the input curve. Any idea on why that would happen (i.e. the linear segment between the first two control points)?
Also, the system wouldn't let me post a picture. Hope the problem is clear enough though..
Your software system most probably uses multiple start and end points. This leads to visually straight lines at the given control points. These are in fact not really linear going, they only look like.
Thanks for replying and looking at my problem, but I have found the bug in my code. I used the number of points from the input curve rather than the number of control points wanted (which have similar variable names in my code) to compute the knot vector and thus the problem propagated from that point onwards.

Snake Game Artificial Intelligence

I am developing a snake game for iOS:
https://github.com/ScottBouloutian/Snake
My goal is to have the AI complete the game of snake optimally (have the snake fill the board).
I am using IDA* to find a path from a snake's current location to the food. This works. However, the algorithm doesn't take into account the fact that it may need to get more food in the future. As a result, sometimes it tends to box itself in.
i.e. The snake's goal at any given time is to find the food, whereas it's goal should be to fill the board (finding food along the way).
How can I add to or modify this approach to make the AI win the game of snake? Is there a better approach I should use instead? I'm just trying to come up with some ideas. Thanks!
If a board is a static rectangle (not torus - so no crossing though the borders) then the only optimal strategy is to find a set of longest closed paths through the board, such that each point in the board is in at least one path.
If a board is empty (there are no obstacles) then there exists an "ultimate" path in the form
16|.1|.6|.7
15|.2|.5|.8
14|.3|.4|.9
13|12|11|10
which goes through all tiles, snake following this pattern will eventually eat all food, and fill the whole board
If there are some obstacles, then such path does not have to exist, then you should find set of such longest paths, and switch between them, when food appears in the unreachable spot of a current path.
For example
#######
#.....#
#.#.#.#
#.....#
#######
Here you have two paths you have to consider, one-longest, going around the whole board, but missing the central spot, and one small loop going through it. As long as food does not appear in the center, you should use the outer loop. Hopefully, if food appears in the center when you fill all the remaining blocks - you will "win". If it appears there sooner - you have to eat it (switch to the other loop) and depending on your current length - you will get back to the best loop, or hit your tail and "lose". In each case, your score will be the best possible to achieve on the board with this locations of foods.
Non A* based approach will find the optimum, this is completely different problem, you should look for the longest closed path, not shortest.

AI Minesweeper project

I need to implement Minesweeper solver. I have started to implement rule based agent.
I have implemented certain rules. I have a heuristic function for choosing best matching rule for current cell (with info about surrounding cells) being treated. So for each chosen cell it can decide for 8 surroundings cells to open them, to mark them or to do nothing. I mean. at the moment, the agent gets as an input some revealed cell and decides what to do with surrounding cells (at the moment, the agent do not know, how to decide which cell to treat).
My question is, what algorithm to implement for deciding which cell to treat?
Suppose, for, the first move, the agent will reveal a corner cell (or some other, according to some rule for the first move). What to do after that?
I understand that I need to implement some kind of search. I know many search algorithms (BFS, DFS, A-STAR and others), that is not the problem, I just do not understand how can I use here these searches.
I need to implement it in a principles of Artificial Intelligence: A modern approach.
BFS, DFS, and A* are probably not appropriate here. Those algorithms are good if you are trying to plan out a course of action when you have complete knowledge of the world. In Minesweeper, you don't have such knowledge.
Instead, I would suggest trying to use some of the logical inference techniques from Section III of the book, particularly using SAT or the techniques from Chapter 10. This will let you draw conclusions about where the mines are using facts like "one of the following eight squares is a mine, and exactly two of the following eight squares is a mine." Doing this at each step will help you identify where the mines are, or realize that you must guess before continuing.
Hope this helps!
I ported this (with a bit of help). Here is the link to it working: http://robertleeplummerjr.github.io/smartSweepers.js/ . Here is the project: https://github.com/robertleeplummerjr/smartSweepers.js
Have fun!

Pacman: how do the eyes find their way back to the monster hole?

I found a lot of references to the AI of the ghosts in Pacman, but none of them mentioned how the eyes find their way back to the central ghost hole after a ghost is eaten by Pacman.
In my implementation I implemented a simple but awful solution. I just hard coded on every corner which direction should be taken.
Are there any better/or the best solution? Maybe a generic one that works with different level designs?
Actually, I'd say your approach is a pretty awesome solution, with almost zero-run time cost compared to any sort of pathfinding.
If you need it to generalise to arbitrary maps, you could use any pathfinding algorithm - breadth-first search is simple to implement, for example - and use that to calculate which directions to encode at each of the corners, before the game is run.
EDIT (11th August 2010): I was just referred to a very detailed page on the Pacman system: The Pac-Man Dossier, and since I have the accepted answer here, I felt I should update it. The article doesn't seem to cover the act of returning to the monster house explicitly but it states that the direct pathfinding in Pac-Man is a case of the following:
continue moving towards the next intersection (although this is essentially a special case of 'when given a choice, choose the direction that doesn't involve reversing your direction, as seen in the next step);
at the intersection, look at the adjacent exit squares, except the one you just came from;
picking one which is nearest the goal. If more than one is equally near the goal, pick the first valid direction in this order: up, left, down, right.
I've solved this problem for generic levels that way: Before the level starts, I do some kind of "flood fill" from the monster hole; every tile of the maze that isn't a wall gets a number that says how far it is away from the hole. So when the eyes are on a tile with a distance of 68, they look which of the neighbouring tiles has a distance of 67; that's the way to go then.
For an alternative to more traditional pathfinding algorithms, you could take a look at the (appropriately-named!) Pac-Man Scent Antiobject pattern.
You could diffuse monster-hole-scent around the maze at startup and have the eyes follow it home.
Once the smell is set up, runtime cost is very low.
Edit: sadly the wikipedia article has been deleted, so WayBack Machine to the rescue...
You should take a look a pathfindings algorithm, like Dijsktra's Algorithm or A* algorithm. This is what your problem is : a graph/path problem.
Any simple solution that works is maintainable, reliable and performs well enough is a good solution. It sounds to me like you have already found a good solution ...
An path-finding solution is likely to be more complicated than your current solution, and hence more likely to require debugging. It will probably also be slower.
IMO, if it ain't broken, don't fix it.
EDIT
IMO, if the maze is fixed then your current solution is good / elegant code. Don't make the mistake of equating "good" or "elegant" with "clever". Simple code can also be "good" and "elegant".
If you have configurable maze levels, then maybe you should just do the pathfinding when you initially configure the mazes. Simplest would be to get the maze designer to do it by hand. I'd only bother automating this if you have a bazillion mazes ... or users can design them.
(Aside: if the routes are configured by hand, the maze designer could make a level more interesting by using suboptimal routes ... )
In the original Pacman the Ghost found the yellow pill eater by his "smell" he would leave a trace on the map, the ghost would wander around randomly until they found the smell, then they would simply follow the smell path which lead them directly to the player. Each time Pacman moved, the "smell values" would get decreased by 1.
Now, a simple way to reverse the whole process would be to have a "pyramid of ghost smell", which has its highest point at the center of the map, then the ghost just move in the direction of this smell.
Assuming you already have the logic required for chasing pacman why not reuse that? Just change the target. Seems like it would be a lot less work than trying to create a whole new routine using the exact same logic.
It's a pathfinding problem. For a popular algorithm, see http://wiki.gamedev.net/index.php/A*.
How about each square having a value of distance to the center? This way for each given square you can get values of immediate neighbor squares in all possible directions. You pick the square with the lowest value and move to that square.
Values would be pre-calculated using any available algorithm.
This was the best source that I could find on how it actually worked.
http://gameai.com/wiki/index.php?title=Pac-Man#Respawn
When the ghosts are killed, their disembodied eyes return to their starting location. This is simply accomplished by setting the ghost's target tile to that location. The navigation uses the same rules.
It actually makes sense. Maybe not the most efficient in the world but a pretty nice way to not have to worry about another state or anything along those lines you are just changing the target.
Side note: I did not realize how awesome those pac-man programmers were they basically made an entire message system in a very small space with very limited memory ... that is amazing.
I think your solution is right for the problem, simpler than that, is to make a new version more "realistic" where ghost eyes can go through walls =)
Here's an analog and pseudocode to ammoQ's flood fill idea.
queue q
enqueue q, ghost_origin
set visited
while q has squares
p <= dequeue q
for each square s adjacent to p
if ( s not in visited ) then
add s to visited
s.returndirection <= direction from s to p
enqueue q, s
end if
next
next
The idea is that it's a breadth-first search, so each time you encounter a new adjacent square s, the best path is through p. It's O(N) I do believe.
I don't know much on how you implemented your game but, you could do the following:
Determine the eyes location relative position to the gate. i.e. Is it left above? Right below?
Then move the eyes opposite one of the two directions (such as make it move left if it is right of the gate, and below the gate) and check if there are and walls preventing you from doing so.
If there are walls preventing you from doing so then make it move opposite the other direction (for example, if the coordinates of the eyes relative to the pin is right north and it was currently moving left but there is a wall in the way make it move south.
Remember to keep checking each time to move to keep checking where the eyes are in relative to the gate and check to see when there is no latitudinal coordinate. i.e. it is only above the gate.
In the case it is only above the gate move down if there is a wall, move either left or right and keep doing this number 1 - 4 until the eyes are in the den.
I've never seen a dead end in Pacman this code will not account for dead ends.
Also, I have included a solution to when the eyes would "wobble" between a wall that spans across the origin in my pseudocode.
Some pseudocode:
x = getRelativeOppositeLatitudinalCoord()
y
origX = x
while(eyesNotInPen())
x = getRelativeOppositeLatitudinalCoordofGate()
y = getRelativeOppositeLongitudinalCoordofGate()
if (getRelativeOppositeLatitudinalCoordofGate() == 0 && move(y) == false/*assume zero is neither left or right of the the gate and false means wall is in the way */)
while (move(y) == false)
move(origX)
x = getRelativeOppositeLatitudinalCoordofGate()
else if (move(x) == false) {
move(y)
endWhile
dtb23's suggestion of just picking a random direction at each corner, and eventually you'll find the monster-hole sounds horribly ineficient.
However you could make use of its inefficient return-to-home algorithm to make the game more fun by introducing more variation in the game difficulty. You'd do this by applying one of the above approaches such as your waypoints or the flood fill, but doing so non-deterministically. So at every corner, you could generate a random number to decide whether to take the optimal way, or a random direction.
As the player progresses levels, you reduce the likelihood that a random direction is taken. This would add another lever on the overall difficulty level in addition to the level speed, ghost speed, pill-eating pause (etc). You've got more time to relax while the ghosts are just harmless eyes, but that time becomes shorter and shorter as you progress.
Short answer, not very well. :) If you alter the Pac-man maze the eyes won't necessarily come back. Some of the hacks floating around have that problem. So it's dependent on having a cooperative maze.
I would propose that the ghost stores the path he has taken from the hole to the Pacman. So as soon as the ghost dies, he can follow this stored path in the reverse direction.
Knowing that pacman paths are non-random (ie, each specific level 0-255, inky, blinky, pinky, and clyde will work the exact same path for that level).
I would take this and then guess there are a few master paths that wraps around the entire
maze as a "return path" that an eyeball object takes pending where it is when pac man ate the ghost.
The ghosts in pacman follow more or less predictable patterns in terms of trying to match on X or Y first until the goal was met. I always assumed that this was exactly the same for eyes finding their way back.
Before the game begins save the nodes (intersections) in the map
When the monster dies take the point (coordinates) and find the
nearest node in your node list
Calculate all the paths beginning from that node to the hole
Take the shortest path by length
Add the length of the space between the point and the nearest node
Draw and move on the path
Enjoy!
My approach is a little memory intensive (from the perspective of Pacman era), but you only need to compute once and it works for any level design (including jumps).
Label Nodes Once
When you first load a level, label all the monster lair nodes 0 (representing the distance from the lair). Proceed outward labelling connected nodes 1, nodes connected to them 2, and so on, until all nodes are labelled. (note: this even works if the lair has multiple entrances)
I'm assuming you already have objects representing each node and connections to their neighbours. Pseudo code might look something like this:
public void fillMap(List<Node> nodes) { // call passing lairNodes
int i = 0;
while(nodes.count > 0) {
// Label with distance from lair
nodes.labelAll(i++);
// Find connected unlabelled nodes
nodes = nodes
.flatMap(n -> n.neighbours)
.filter(!n.isDistanceAssigned());
}
}
Eyes Move to Neighbour with Lowest Distance Label
Once all the nodes are labelled, routing the eyes is trivial... just pick the neighbouring node with the lowest distance label (note: if multiple nodes have equal distance, it doesn't matter which is picked). Pseudo code:
public Node moveEyes(final Node current) {
return current.neighbours.min((n1, n2) -> n1.distance - n2.distance);
}
Fully Labelled Example
For my PacMan game I made a somewhat "shortest multiple path home" algorithm which works for what ever labyrinth I provide it with (within my set of rules). It also works across them tunnels.
When the level is loaded, all the path home data in every crossroad is empty (default) and once the ghosts start to explore the labyrinth, them crossroad path home information keeps getting updated every time they run into a "new" crossroad or from a different path stumble again upon their known crossroad.
The original pac-man didn't use path-finding or fancy AI. It just made gamers believe there is more depth to it than it actually was, but in fact it was random. As stated in Artificial Intelligence for Games/Ian Millington, John Funge.
Not sure if it's true or not, but it makes a lot of sense to me. Honestly, I don't see these behaviors that people are talking about. Red/Blinky for ex is not following the player at all times, as they say. Nobody seems to be consistently following the player, on purpose. The chance that they will follow you looks random to me. And it's just very tempting to see behavior in randomness, especially when the chances of getting chased are very high, with 4 enemies and very limited turning options, in a small space. At least in its initial implementation, the game was extremely simple. Check out the book, it's in one of the first chapters.

Resources