Is app engine more expensive when it's slower? - google-app-engine

There have been quite a few occasions recently when app engine appears to run slower. To some degree that's understandable with the architecture of their cloud platform. I'm not talking about new server instances - just requests to warm servers. I'm also just referring to CPU, not datastore API, but I do wonder about that as well.
It seems that during these slow periods I get a lot more yellow warnings on my requests - saying I am using a lot of CPU. Certainly they take longer to complete during this period. What concerns me is that during these slow periods, my billable CPU seems to go up.
So to be clear - when app engine is fast, a request might complete in 100ms. In a slow period, it might take more than 1s for the same request. Same URI, same caching, same processing path, same datastore, same indexes - much more CPU. The yellow warnings, as I understand it, are referring to billable CPU usage, and there's many more of them when app engine is slower.
This seems to set up a bizarre situation where my app costs more to run when app engine performance is worse. This means google makes more money the more poorly the platform performs (up to the point where it fails or customers leave). Maybe I've got the situation all wrong, and it doesn't work like that - but if it does work like that, then as a customer the pressures and balances there are all wrong. That's not intimating any wrong-doing on google's part - just that the relationships between those two things don't seem right.
It almost seems like google's algorithm goes something like - 'If I give a processing job to a CPU and start my watch, then stop it when the job returns I get the billable CPU figure.' i.e. it doesn't measure CPU work at all. Surely that time should be divided by the number of processing jobs being concurrently executed plus some extra to cover the additional context switching. I'm sure that stuff is hard to measure - perhaps that's the reason.
I guess you could argue it is fair that you pay more when app engine is in high demand, but that makes budgeting close to impossible - you can't generate stats like '100 users costs me $1 a day', because that could change for a whole host of reasons - including app engine onboarding more customers than the infrastructure can realistically handle. If google over-subscribes app engine then all customers pay more - it's another relationship that doesn't sound right. Surely google's costs should go down as they onboard more customers, and those customers use more resources - based on economies of scale.
Should I expect two identical requests in my app to cost me roughly the same amount each time they run - regardless of how much wall-time app engine takes to actually complete them? Have I misunderstood how this works? If I haven't, is there a reason why I shouldn't be worried about it in the long term? Is there some documentation which makes this situation clearer? Cheers,
Colin

It would be more complicated, but they could change the billing algorithm to be a function of load. Or perhaps they could normalize the CPU measurements based on the performance of similar calls in the past.
I agree that this presents problems for the developers.

Yes this is true. It is a bummer. It also takes them over a second to start up my Java application (which I was billed for) every time they decided my site was in low demand, and didn't need the resources.
I ended up using a cron to auto ping my site every minute to keep it warm.. doing all the wasted work made my bill cheaper, as it didn't have the startup time, instead it just had lots of 2ms pings...

This question appears old and I think the pricing scheme must have changed...
The Google App Engine charges for "instance hours" and the instances currently spawned are viewable in the GAE console. And Google provides adjustments so you can decide cost vs latency for your app.
https://developers.google.com/appengine/docs/adminconsole/performancesettings
I did noticed that if the front-end is bogged down hitting a common backend resource that GAE will spawn a bunch of instances to get latency down. And you will pay for those instance hours even though latency/throughput doesn't improve. The adjustments I mentioned seem to help with that.

Related

How to Gain Visibility and Optimize Quota Usage in Google App Engine?

How do I go about optimizing my Google App Engine app to reduce instance hours I am currently using/paying for?
I have been using app engine for a while and the cost has been creeping upwards. I now spend enough on GAE to invest time into reducing the expense. More than half of my GAE bill is due to frontend instance hours, so it's the obvious place to start. But before I can start optimizing, I have to figure out what's using the instance hours.
However, I am having difficulty trying to determine what is currently using so many of my frontend instance hours. My app serves many ajax requests, dynamic HTML pages, cron jobs, and deferred tasks. For all I know there could be some runaway process that is causing my instance usage to be so high.
What methods or techniques are available to allow me to gain visibility into my app to see where I am using instance hours?
Besides code changes (all suggestions in the other answer are good) you need to look into the instances over time graph.
If you have spikes and constant use, the instances created during the spikes wont go to sleep because appengine will keep using them. In appspot application settings, change the "idle instances" max to a low number like 1 (or your actual daily average).
Also, change min latency to a higher number so less instances will be created on spikes.
All these suggestions can make an immediate effect on lowering your bill, but its just a complement to the code optimizations suggested in the other answer.
This is a very broad question, but I will offer a few pointers.
First, examine App Engine's console Dashboard and logs. See if there are any errors. Errors are expensive both in terms of lost business and in extra instance hours. For example, tasks are retried several times, and these reties may easily prolong the life of an instance beyond what is necessary.
Second, the Dashboard shows you the summary of your requests over 24 hours period. Look for requests with high latency. See if you can improve them. This will both improve the user experience and may reduce the number of instance hours as more requests can be handled by each instance.
Also look for data points that surprise you as a developer of your app. If you see a request that is called many more times that you think is normal, zero in on it and see what it is happening.
Third, look at queues execution rates. When you add multiple tasks to a queue, do you really need all of them to be executed within seconds? If not, reduce the execution rate so that the queue never needs more than one instance.
Fourth, examine your cron jobs. If you can reduce their frequency, you can save a bunch of instance hours. If your cron jobs must run frequently and do a lot of computing, consider moving them to a Compute Engine instance. Compute Engine instances are many times cheaper, so having such an instance run for 24 hours may be a better option than hitting an App Engine instance every 15 minutes (or even every hour).
Fifth, make sure your app is thread-safe, and your App Engine configuration states so.
Finally, do the things that all web developers do (or should do) to improve their apps/websites. Cache what can be cached. Minify what needs to be minified. Put images in sprites. Split you code if it can be split. Use Memcache. Etc. All of these steps reduce latency and/or client-server roundtrips, which helps to reduce the number of instances for the same number of users.
Ok, my other answer was about optimizing at the settings level.
To trace the performance at a granular level use the new cloud trace relased today at google i/o 2014.
http://googledevelopers.blogspot.com/2014/06/cloud-platform-at-google-io-enabling.html

Identify why Google app engine is slow

I developed an application for client that uses Play framework 1.x and runs on GAE. The app works great, but sometimes is crazy slow. It takes around 30 seconds to load simple page but sometimes it runs faster - no code change whatsoever.
Are there any way to identify why it's running slow? I tried to contact support but I couldnt find any telephone number or email. Also there is no response on official google group.
How would you approach this problem? Currently my customer is very angry because of slow loading time, but switching to other provider is last option at the moment.
Use GAE Appstats to profile your remote procedure calls. All of the RPCs are slow (Google Cloud Storage, Google Cloud SQL, ...), so if you can reduce the amount of RPCs or can use some caching datastructures, use them -> your application will be much faster. But you can see with appstats which parts are slow and if they need attention :) .
For example, I've created a Google Cloud Storage cache for my application and decreased execution time from 2 minutes to under 30 seconds. The RPCs are a bottleneck in the GAE.
Google does not usually provide a contact support for a lot of services. The issue described about google app engine slowness is probably caused by a cold start. Google app engine front-end instances sleep after about 15 minutes. You could write a cron job to ping instances every 14 minutes to keep the nodes up.
Combining some answers and adding a few things to check:
Debug using app stats. Look for "staircase" situations and RPC calls. Maybe something in your app is triggering RPC calls at certain points that don't happen in your logic all the time.
Tweak your instance settings. Add some permanent/resident instances and see if that makes a difference. If you are spinning up new instances, things will be slow, for probably around the time frame (30 seconds or more) you describe. It will seem random. It's not just how many instances, but what combinations of the sliders you are using (you can actually hurt yourself with too little/many).
Look at your app itself. Are you doing lots of memory allocations in the JVM? Allocating/freeing memory is inherently a slow operation and can cause freezes. Are you sure your freezing is not a JVM issue? Try replicating the problem locally and tweak the JVM xmx and xms settings and see if you find similar behavior. Also profile your application locally for memory/performance issues. You can cut down on allocations using pooling, DI containers, etc.
Are you running any sort of cron jobs/processing on your front-end servers? Try to move as much as you can to background tasks such as sending emails. The intervals may seem random, but it can be a result of things happening depending on your job settings. 9 am every day may not mean what you think depending on the cron/task options. A corollary - move things to back-end servers and pull queues.
It's tough to give you a good answer without more information. The best someone here can do is give you a starting point, which pretty much every answer here already has.
By making at least one instance permanent, you get a great improvement in the first use. It takes about 15 sec. to load the application in the instance, which is why you experience long request times, when nobody has been using the application for a while

What are the rules of thumb when trying to decide if developing on Google App Engine platform is worthwhile

I have an idea for a web application and I am currently researching different platforms. I am really interested in Google App Engine, but it looks like it works pretty good for certain application types while it is less suitable for others (there are horror as well as success stories e.g. Goodbye Google App Engine vs. Why we are really happy with Google App Engine
There is also a similar negative story in this thread from 1 year ago, concluding GAE was not ready for commercial production platform: GAE as Production Platform. There are also other threads from 2009 talking about data select limits (1000 rows) that has since been lifted.
My app will essentially perform some mathematical analysis based on data pulled from external data feeds (could be some substantial amount of data), it would be real time only the first time data is downloaded for a specific item at hand and then stored and retrieved locally from the database at that point. There will be some additional external data pulls as scheduled intervals.
Based on this brief description, should I even bother starting on GAE? In general, what are the rules of thumb to try and decide if developing on GAE is suitable for a problem at hand? Also, what are the good examples of Apps in Production that use GAE. It looks like GAE App Gallery is not around anymore, but I would definitely appreciate any Web 2.0 App examples running on the app engine.
In your specific case I would double check these factors:
a. Is the mathematical analysis a long running CPU intensive job?
GAE is not designed for long running CPU intensive computational Jobs; this would lead to have an high billing cost and would force you to design your application to avoid some GAE limitations (10 minutes max per job, limited soft memory, CPU quota, etc. etc.).
b. Are you planning to retrieve external data using a mainstream API (twitter, yahoo, facebook)?
Your application shares the same pool of IPs with other applications; if the API you want to adopt does not allow authenticated request, your application will suffer hiccups caused by throttling/quota limits errors. I faced this problem here.
App Engine should work fine for your application. It's generally designed to serve, and to scale, sites that serve mostly user-facing traffic. Applications that it's not suitable for are things such as video transcoding, which rely heavily on backend processing, or things that have to shell out to native code, such as 3D graphics, etcetera.
Depends on what type of mathematical analysis are you doing. If your application is heavy in I/O, I would give it some pause. On GAE, you're kind of limited in your I/O options. You basically have the following:
RAM: I can't recall exactly, but GAE imposes a hard limit of around 200MB of RAM.
Datastore: You get plenty of space here, but it's slow compared to a cached local file system.
Memcache: Faster than datastore, but not nearly as fast as a cached disk. And worse, it's a cache, so there's no guarantee that it won't get wiped out.
External sources: These include calling out to external web-pages. Lots of flexibility, but very slow.
In sum, I would perhaps look at other options if you're doing heavy I/O on a medium-size dataset (>20MB and ~<2GB). These are probably non-issues for 90% of web-apps, although you should be aware of them.
All the negatives aside, working on GAE is a joyous experience. You spend more time programming and less time configuring. And it's really cheap.

Is GAE a viable platform for my application? (if not, what would be a better option?)

Here's the requirement at a very high level.
We are going to distribute desktop agents (or browser plugins) to collect certain information from tons of users (in thousands or possibly millions down the road).
These agents collect data and periodically upload it to a server app.
The server app will allow for analyzing collected data (filter, sort etc based on 4-5 attributes) and summarize in form of charts etc.
We should also be able to export some of the collected data (csv or pdf)
We are looking for an platform to host the server app. GAE seems attractive because of low administrative cost and scalability (as users base increases, the platform will handle the scale... hopefully!).
Is GAE a viable option for us?
One important consideration is that sometimes the volume of uploads from the agents can exceed 50MB per upload cycle. We will have users in places where Internet connections could be very slow too. Apparently GAE has a limit on the duration a request can last. The upload volume may cause the request (transferring data from an agent to the server) to last longer than 30 seconds. How would one handle such situation?
Thanks!
The time of the upload is not considered part of the script execution time, so no worries there.
Google App Engine is very good to perform a vast number of smaller jobs but not so much to do complex long running background jobs (because of the 30 sec limit + even smaller database connection time limit). So probably GAE would be a very good platform to GATHER the data but not for actually ANALYZING it. You probably would like to separate these two.
We went ahead an implemented the first version on GAE anyway. The experience has been very much what is described here http://www.carlosble.com/?p=719
For a proof-of-concept prototype, what we have built so far is acceptable. However, we have decided not to go with GAE (at least in its current shape) for the production version. The pains somewhat outweigh the benefits in our case.
The problems we faced were numerous. Unlike my experience dealing with J2EE stacks, when you run into an issue, many a times it is a dead end. Workarounds are very complicated and ugly, if you can find one.
By writing good prototypes one could figure out whether GAE is right for the solution being built, however, the hype is a problem. Many newcomers are going get overly excited about GAE due to its hype and end up failing badly. Because they will choose GAE for all kinds of purpose that it is not suitable for.

Long app startup times (java), maybe using Slim3 to improve?

I'm getting close to completing an app engine project (java + jdo), and am a bit worried about startup times. When the app is 'cold', it can take a long time for app engine to load my app (more than 5 seconds) - this is bad because often times the user may just give up after waiting so long.
There's a project called Slim3, which wraps the native datastore - it's supposed to give you startup times of 1 - 3 seconds:
http://sites.google.com/site/slim3appengine/
I don't really want to rely on a third party just to get decent startup times, but I don't think we have any choice. Just wondering how you've dealt with long startup times. I read that as long as your app is getting a hit per 2 minutes or so, then your app is kept resident and this isn't really an issue. That's fair and fine by me (if true).
I don't think the app engine team is working on reducing startup time right now, so wondering what, if anything, we should do to solve this ourselves?
Thanks
Objectify is another alternative datastore wrapper that is supposed to be faster than JDO.
According to the Roadmap, the app engine team is in fact working on this problem, by giving us the ability to reserve instances. Of course there is not even an estimate of a target date, so it is probably still worth looking into a solution in the meantime.
The other thing you can do is make sure that you have eliminated all of your own code as a startup bottleneck. Are you sure it is just the JDO code that is taking a long time? Are there any initialization tasks you can defer until later, to spread the cost of the first hit?
FYI, in Japanese App Engine community, Slim3 is a defacto standard for accessing to Datastore - over 50% of users on my Twitter TL are using it for profuction service. It's much faster than JDO for both spin-up time and query speed (as fast as low level API), and easier to build a query by utilizing Java/Eclipse's type system.
Thanks,
Kaz

Resources