I'm working on a school project that involves taking a lat/long point and finding the top five closest points in a known list of places. The list is to be stored in memory, with the caveat that we must choose an "appropriate data structure" -- that is, we cannot simply store all the places in an array and compare distances one-by-one in a linear fashion. The teacher suggested grouping the place data by US State to prevent calculating the distance for places that are obviously too far away. I think I can do better.
From my research online it seems like an R-Tree or one of its variants might be a neat solution. Unfortunately, that sentence is as far as I've gotten with understanding the actual technique, as the literature is simply too dense for my non-academic head.
Can somebody give me a really high overview of what the process is for populating an R-Tree with lat/long data, and then traversing the tree to find those 5 nearest neighbors of a given point?
Additionally the project is in C, and I don't have to reinvent the wheel on this, so if you've used an existing open source C implementation of an R Tree I'd be interested in your experiences.
UPDATE: This blog post describes a straightforward search algorithm for a regionally partitioned space (like a PR quadtree). Hope that helps a future reader.
Have you considered alternative data structures?
I believe, instead of R-tree a Point Quadtree would be more effective for your need.Spatial Index Demos provides some demos for a list of possible data structures including R-tree and Point Quadtree. Hope it gives an insight.
Quad Trees
A quad tree takes a square of space and divides it into four children with half the dimensions along the X and Y axis.
+---+---+
| | | Each square is a child
| | | of the parent; when you
+---+---+ get to leaves a node has
| | | a single point or a list
| | | of points.
+---+---+
This data structure is recursive and you search for points by checking which child holds the point until you get to the leaf. A leaf either has a single member (point with X,Y coords) or a list of members, depending on the implementation. If you fill up a node you split it into 4 and distribute the children. Essentially, the data structure is a generalisation of a binary tree, so it is not necessarily balanced.
Balancing a quad tree may not be necessary for your purposes and is left as an exercise for the reader - try searching on the web for 'balanced quad tree'
Note that this data structure cannot index items that can overlap, but if you're only storing points this won't be a problem.
Finding nearest neighbours in a quad tree
Off the top of my head, here's a quick and dirty algorithm for finding the 'n' nearest neighbours to your point. It's not necessarily optimially efficient, but it will be fairly simple to implement. If someone has a link to a better one, feel free to post it in a comment or answer.
Locate the quad tree node containing
your point, keeping a list of its
parents.
Push all of the points in the
node into a priority queue based on
their distance from your base point
(i.e. by the length of the hypotenuse
per Pythagoras' theorem). Depending
on the implementation there may be
one or more per node. For a simple
implementation of a priority queue
data structure, look up 'binary
heap'.
If any of the 'n' points are further away then the edges of the bounding box, add the contents of its neighbours. i.e. If your base point is close to the edge of the bounding box, it is possible that neighbouring tree nodes might contain points that are closer than the points found within your bounding box. You will need to back up the tree to do this, which is why you need to keep track of your parent nodes.
When all of the 'n' closest points are closer than the edges of your bounding box you know that there could not possibly be neighbours that you have missed. Therefore, the 'n' closest points within this box must be your 'n' closest neighbours.
Related
Imagine I have the following structure represented in an array:
The blue cells represent "boundaries" and the red cell represents the structures origin. I have a function that calculates the distances of each interior cell (cells which aren't boundaries) to its closest boundary and to the origin.
Currently I do this with a nested for loop which essentially tests all cell positions to my current position and selects the cell with the smallest distance which is also marked a boundary cell.
For small data-sets this is okay, but when you have a large array of possible points to iterate through this comes painfully slow.
I am looking for a solution which would be faster but trade accuracy. Currently I am able to return the exact closest boundary cell to any given interior cell but I only really need a close approximation of which cell is closest.
Each cell in the array already has the following information:
Arbitrary position (used for distance calculation)
Is a Boundary Cell
A list of neighbours (any cells which share an edge)
Things to note:
The structure does not necessarily conform to any type of specific polygon shape
The array isn't necessarily ordered in any logical way
The array is flat (i.e 1D)
Possible solutions I have thought of (but have otherwise untested):
An A* approach (as each cell knows its neighbour I could do something like this but I think it would be worse for performance than my current brute force method
A priority queue which sorts from smallest to largest distance from origin (but unsure of how to achieve approximate closest border)
I am assuming that the cells are irrelevant. Everything just depends on the distinguished points in the cells. Finding the distance to the origin is one calculation and cannot be improved. So your problem reduces to: You have red points and white points (to stick to your color scheme), and you want to find the closest blue point to each white point.
This is a version of nearest-neighbor search. There is extensive
literature on this problem, as well as variants such as approximate nearest-neighbor search. Here is one paper that could lead you to others:
Connor, Michael, and Piyush Kumar. "Practical Nearest Neighbor Search in the Plane." SEA. 2010. (Springer link.)
The bottom line is that with appropriate data structures, you can achieve
O(log n) query time per white point, which is much faster than the naive linear search.
jgrapht supports the idea of putting a wehight(a cost) on an edge/vertex between two nodes. This can be achieved using the class DefaultWeightedEdge.
In my graph I do have the requirement to not find the shortest path but the cheapest one. The cheapest path might be longer/have more hops nodes to travel then the shortest path.
Therefor, one can use the DijkstraShortestPath algorithm to achieve this.
However, my use case is a bit more complex: It needs to also evaluate costs on actions that need to be executed when arriving at a node.
Let's say, you have a graph like a chess board(8x8 fields, each field beeing a node). All the edges have a weight of 1. To move in a car from left bottom to the diagonal corner(right upper), there are many paths with the cost of 16. You can take a diagonal path in a zic zac style, or you can first travel all nodes to the right and then all nodes upwards.
The difference is: When taking a zic zac, you need to rotate yourself in the direction of moving. You rotate 16 times.
When moving first all to the right and then upwards, you need to rotate only once (maybe twice, depending on your start orientation).
So the zic zac path is, from a Djikstra point of view, perfect. From a logical point of view, it's the worst.
Long story short: How can I put some costs on a node or edge depending on the previous edge/node in that path? I did not find anything related in the source code of jgrapht.
Or is there a better algorithm to use?
This is not a JGraphT issue but a graph algorithm issue. You need to think about how to encode this problem and formalize that in more detail
Incorporating weights on vertices is in general easy. Say that every vertex represents visiting a customer, which takes a_i time. This can be encoded in the graph by adding a_i/2 to the cost of every incoming arc in node i, as well as a_i/2 to the cost of every outgoing arc.
A cost function where the cost of traveling from j to k dependents on the arc (i,j) you used to travel to j is more complicated.
Approach a.: Use a dynamic programming (labeling) algorithm. This is perhaps the easiest. You can define your cost function as a recursive function, where the cost of traversing an arc depends on the cost of the previous arc.
Approach b.: With some tricks you may be able to encode the costs in the graph by adding extra nodes to it. Here's an example:
Given a graph with vertices {a,b,c,d,e}, with arcs: (a,e), (e,b), (c,e), (e,d). This graph represents a crossroad with vertex e being in the middle. Going from a->e->b (straight) is free, however, a turn from a->e->d takes additional time. Similar for c->e->d (straight) is free and c->e->b (turning) should be penalized.
Decouple vertex e in 4 new vertices: e1,e2,e3,e4.
Add the following arcs:
(a,e1), (e3,b), (c,e2), (e4,d), (e2, e3), (e1, e3), (e1, e4), (e2, e4).
(e1,e4) and (e2,e3) can have a positive weight to penalize turning.
There is only one question related to this in stackoverflow, and it is more about which one is better. I just dont really understand the difference. I mean they both work with vectors, which are assigned randomly to clusters, they both work with the centroids of the different clusters in order to determine the winning output node. I mean, where exactly lies the difference?
In K-means the nodes (centroids) are independent from each other. The winning node gets the chance to adapt each self and only that. In SOM the nodes (centroids) are placed onto a grid and so each node is consider to have some neighbors, the nodes adjacent or near to it in repspect with their position on the grid. So the winning node not only adapts itself but causes a change for its neighbors also. K-Means can be considered a special case of SOM were no neighbors are taken into account when modifing centroids vectors. For more, you can still google it ....
The deadline for this project is closing in very quickly and I don't have much time to deal with what it's left. So, instead of looking for the best (and probably more complicated/time consuming) algorithms, I'm looking for the easiest algorithms to implement a few operations on a Graph structure.
The operations I'll need to do is as follows:
List all users in the graph network given a distance X
List all users in the graph network given a distance X and the type of relation
Calculate the shortest path between 2 users on the graph network given a type of relation
Calculate the maximum distance between 2 users on the graph network
Calculate the most distant connected users on the graph network
A few notes about my Graph implementation:
The edge node has 2 properties, one is of type char and another int. They represent the type of relation and weight, respectively.
The Graph is implemented with linked lists, for both the vertices and edges. I mean, each vertex points to the next one and each vertex also points to the head of a different linked list, the edges for that specific vertex.
What I know about what I need to do:
I don't know if this is the easiest as I said above, but for the shortest path between 2 users, I believe the Dijkstra algorithm is what people seem to recommend pretty often so I think I'm going with that.
I've been searching and searching and I'm finding it hard to implement this algorithm, does anyone know of any tutorial or something easy to understand so I can implement this algorithm myself? If possible, with C source code examples, it would help a lot. I see many examples with math notations but that just confuses me even more.
Do you think it would help if I "converted" the graph to an adjacency matrix to represent the links weight and relation type? Would it be easier to perform the algorithm on that instead of the linked lists? I could easily implement a function to do that conversion when needed. I'm saying this because I got the feeling it would be easier after reading a couple of pages about the subject, but I could be wrong.
I don't have any ideas about the other 4 operations, suggestions?
List all users in the graph network given a distance X
A distance X from what? from a starting node or a distance X between themselves? Can you give an example? This may or may not be as simple as doing a BF search or running Dijkstra.
Assuming you start at a certain node and want to list all nodes that have distances X to the starting node, just run BFS from the starting node. When you are about to insert a new node in the queue, check if the distance from the starting node to the node you want to insert the new node from + the weight of the edge from the node you want to insert the new node from to the new node is <= X. If it's strictly lower, insert the new node and if it is equal just print the new node (and only insert it if you can also have 0 as an edge weight).
List all users in the graph network given a distance X and the type of relation
See above. Just factor in the type of relation into the BFS: if the type of the parent is different than that of the node you are trying to insert into the queue, don't insert it.
Calculate the shortest path between 2 users on the graph network given a type of relation
The algorithm depends on a number of factors:
How often will you need to calculate this?
How many nodes do you have?
Since you want easy, the easiest are Roy-Floyd and Dijkstra's.
Using Roy-Floyd is cubic in the number of nodes, so inefficient. Only use this if you can afford to run it once and then answer each query in O(1). Use this if you can afford to keep an adjacency matrix in memory.
Dijkstra's is quadratic in the number of nodes if you want to keep it simple, but you'll have to run it each time you want to calculate the distance between two nodes. If you want to use Dijkstra's, use an adjacency list.
Here are C implementations: Roy-Floyd and Dijkstra_1, Dijkstra_2. You can find a lot on google with "<algorithm name> c implementation".
Edit: Roy-Floyd is out of the question for 18 000 nodes, as is an adjacency matrix. It would take way too much time to build and way too much memory. Your best bet is to either use Dijkstra's algorithm for each query, but preferably implementing Dijkstra using a heap - in the links I provided, use a heap to find the minimum. If you run the classical Dijkstra on each query, that could also take a very long time.
Another option is to use the Bellman-Ford algorithm on each query, which will give you O(Nodes*Edges) runtime per query. However, this is a big overestimate IF you don't implement it as Wikipedia tells you to. Instead, use a queue similar to the one used in BFS. Whenever a node updates its distance from the source, insert that node back into the queue. This will be very fast in practice, and will also work for negative weights. I suggest you use either this or the Dijkstra with heap, since classical Dijkstra might take a long time on 18 000 nodes.
Calculate the maximum distance between 2 users on the graph network
The simplest way is to use backtracking: try all possibilities and keep the longest path found. This is NP-complete, so polynomial solutions don't exist.
This is really bad if you have 18 000 nodes, I don't know any algorithm (simple or otherwise) that will work reasonably fast for so many nodes. Consider approximating it using greedy algorithms. Or maybe your graph has certain properties that you could take advantage of. For example, is it a DAG (Directed Acyclic Graph)?
Calculate the most distant connected users on the graph network
Meaning you want to find the diameter of the graph. The simplest way to do this is to find the distances between each two nodes (all pairs shortest paths - either run Roy-Floyd or Dijkstra between each two nodes and pick the two with the maximum distance).
Again, this is very hard to do fast with your number of nodes and edges. I'm afraid you're out of luck on these last two questions, unless your graph has special properties that can be exploited.
Do you think it would help if I "converted" the graph to an adjacency matrix to represent the links weight and relation type? Would it be easier to perform the algorithm on that instead of the linked lists? I could easily implement a function to do that conversion when needed. I'm saying this because I got the feeling it would be easier after reading a couple of pages about the subject, but I could be wrong.
No, adjacency matrix and Roy-Floyd are a very bad idea unless your application targets supercomputers.
This assumes O(E log V) is an acceptable running time, if you're doing something online, this might not be, and it would require some higher powered machinery.
List all users in the graph network given a distance X
Djikstra's algorithm is good for this, for one time use. You can save the result for future use, with a linear scan through all the vertices (or better yet, sort and binary search).
List all users in the graph network given a distance X and the type of relation
Might be nearly the same as above -- just use some function where the weight would be infinity if it is not of the correct relation.
Calculate the shortest path between 2 users on the graph network given a type of relation
Same as above, essentially, just determine early if you match the two users. (Alternatively, you can "meet in the middle", and terminate early if you find someone on both shortest path spanning tree)
Calculate the maximum distance between 2 users on the graph network
Longest path is an NP-complete problem.
Calculate the most distant connected users on the graph network
This is the diameter of the graph, which you can read about on Math World.
As for the adjacency list vs adjacency matrix question, it depends on how densely populated your graph is. Also, if you want to cache results, then the matrix might be the way to go.
The simplest algorithm to compute shortest path between two nodes is Floyd-Warshall. It's just triple-nested for loops; that's it.
It computes ALL-pairs shortest path in O(N^3), so it may do more work than necessary, and will take a while if N is huge.
I do work in theoretical chemistry on a high performance cluster, often involving molecular dynamics simulations. One of the problems my work addresses involves a static field of N-dimensional (typically N = 2-5) hyper-spheres, that a test particle may collide with. I'm looking to optimize (read: overhaul) the the data structure I use for representing the field of spheres so I can do rapid collision detection. Currently I use a dead simple array of pointers to an N-membered struct (doubles for each coordinate of the center) and a nearest-neighbor list. I've heard of oct- and quad- trees but haven't found a clear explanation of how they work, how to efficiently implement one, or how to then do fast collision detection with one. Given the size of my simulations, memory is (almost) no object, but cycles are.
How best to approach this for your problem depends on several factors that you have not described:
- Will the same hypersphere arrangement be used for many particle collision calculations?
- Are the hyperspheres uniform size?
- What is the movement of the particle (e.g. straight line/curve) and is that movement affected by the spheres?
- Do you consider the particle to have zero volume?
I assume that the particle does not have simple straight line movement as that would be the relatively fast calculation of finding the closest point between a line and a point, which is likely going to be about the same speed as finding which of the boxes the line intersects with (to determine where in the n-tree to examine).
If your hypersphere positions are fixed for a lot of particle collisions then computing a voronoi decomposition/Dirichlet tessellation would give you a fast way of later finding exactly which sphere is closest to your particle for any given point in the space.
However to answer your original question about octrees/quadtrees/2^n-trees, in n dimensions you start with a (hyper)-cube that contains the area of space that you are interested in. This will be subdivided into 2^n hypercubes if you deem the contents to be too complicated. This continues recursively until you have only simple elements (e.g. one hypersphere centroid) in the leaf nodes.
Now that the n-tree is built you use it for collision detection by taking the path of your particle and intersecting it with the outer hypercube. The intersection position will tell you which hypercube in the next level down of the tree to visit next, and you determine the position of intersection with all 2^n hypercubes at that level, following downwards until you reach a leaf node. Once you reach the leaf you can examine interactions between your particle path and the hypersphere stored at that leaf. If you have collision you have finished, otherwise you have to find the exit point of the particle path from the current hypercube leaf and determine which hypercube it moves to next. Continue until you find a collision or entirely leave the overall bounding hypercube.
Efficiently finding the neighbouring hypercube when exiting a hypercube is one of the most challenging parts of this approach. For 2^n trees Samet's approaches {1, 2} can be adapted. For kd-trees (binary trees) an approach is suggested in {3} section 4.3.3.
Efficient implementation can be as simple as storing a list of 8 pointers from each hypercube to its children hypercubes, and marking the hypercube in a special way if it is a leaf (e.g. make all pointers NULL).
A description of dividing space to create a quadtree (which you can generalise to n-tree) can be found in Klinger & Dyer {4}
As others have mentioned kd-trees may be more suited than 2^n-trees as extension to an arbitrary number of dimensions is more straightforward, however they will result in a deeper tree. It is also easier to adapt the split positions to match the geometry of your
hyperspheres with a kd-tree. The description above of collision detection in a 2^n tree is equally applicable to a kd-tree.
{1} Connected Component Labeling, Hanan Samet, Using Quadtrees Journal of the ACM Volume 28 , Issue 3 (July 1981)
{2} Neighbor finding in images represented by octrees, Hanan Samet, Computer Vision, Graphics, and Image Processing Volume 46 , Issue 3 (June 1989)
{3} Convex hull generation, connected component labelling, and minimum distance
calculation for set-theoretically defined models, Dan Pidcock, 2000
{4} Experiments in picture representation using regular decomposition, Klinger, A., and Dyer, C.R. E, Comptr. Graphics and Image Processing 5 (1976), 68-105.
It sounds like you'd want to implement a kd-tree, which would allow you to more quickly search the N-dimensional space. There's some more information and links to implementations at the Stony Brook Algorithm Repository.
Since your field is static (by which I'm assuming you mean that the hyper spheres don't move), then the fastest solution I know of is a Kdtree.
You can either make your own, or use someone else's, like this one:
http://libkdtree.alioth.debian.org/
A Quad tree is a 2 dimensional tree, in which at each level a node has 4 children, each of which covers 1/4 of the area of the parent node.
An Oct tree is a 3 dimensional tree, in which at each level a node has 8 children, each of which contains 1/8th of the volume of the parent node. Here is picture to help you visualize it: http://en.wikipedia.org/wiki/Octree
If you're doing N dimensional intersection tests, you could generalize this to an N tree.
Intersection algorithms work by starting at the top of the tree and recursively traversing into any child nodes that intersect the object being tested, at some point you get to leaf nodes, which contain the actual objects.
An octree will work as long as you can specify the spheres by their centres - it hierarchically bins points into cubic regions with eight children. Working out neighbours in an octree data structure will require you to do sphere-intersecting-cube calculations (to some extent easier than they look) to work out which cubic regions in an octree are within the sphere.
Finding the nearest neighbours means walking back up the tree until you get a node with more than one populated child and all surrounding nodes included (this ensures the query gets all sides).
From memory, this is the (somewhat naive) basic algorithm for sphere-cube intersection:
i. Is the centre within the cube (this gets the eponymous situation)
ii. Are any of the corners of the cube within radius r of the centre (corners within the sphere)
iii. For each surface of the cube (you can eliminate some of the surfaces by working out which side of the surface the centre lies on) work out (this is all first-year vector arithmetic):
a. A normal of the surface that goes to the centre of the sphere
b. The distance from the centre of the sphere to the intersection of the normal with the plane of the surface (chord intersets plane the surface of the cube)
c. Intersection of the plane lies within the side of the cube (one condition of chord intersection to the cube)
iv. Calculate the size of the chord (Sin of Cos^-1 of ratio of normal length to radius of sphere)
v. If the nearest point on the line is less than the distance of the chord and the point lies between the ends of the line the chord intersects one of the edges of the cube (chord intersects cube surface somewhere along one of the edges).
Slightly dimly remembered but this is something I did for a situation involving spherical regions using an octee data structure (many years ago). You may also wish to check out KD-trees as some of the other posters suggest but your initial question sounds very similar to what I did.