Are ontology storage engines slower than RDMBS systems? - database

My intuition says that ontology engines like Triplestore or Seseme are going to be slower to query than a DB, but is that really the case? What is it that would make them so much slower?

Basically, the answer is 'yes'. This is due to the fact that many Ontology engines use an RDBMS data model behind the scenes to manipulate the ontology. But if you happen to find a thorough engine that does not rely on RDBMS, then it needs benchmarking to find out.
Hope this helps! -- etamar.

Related

When should I use Datomic?

I'm intrigued in the database service Datomic, but I'm not sure if it fits the needs of the projects I work on. When is Datomic a good choice, and when should it be avoided?
With the proviso that I haven't used Datomic in production, thought I'd give you an answer.
Advantages
Datalog queries are powerful (more so than non-recursive SQL) and very expressive.
Queries can be written with Clojure data structures, and it's NOT a weak DSL like many SQL libraries that allow you to query with data structures.
It's immutable, so you get the advantages that immutability gives you in Clojure/other languages as well
a. This also allows you to store, while saving structures, all past facts in your database—this is VERY useful for auditing & more
Disadvantages
It can be slow, as Datalog is just going to be slower than equivalent SQL (assuming an equivalent SQL statement can be written).
If you are writing a LOT, you could maybe need to worry about the single transactor getting overwhelmed. This seems unlikely for most cases, but it's something to think about (you could do a sort of shard, though, and probably save yourself; but this isn't a DB for e.g. storing stock tick data).
It's a bit tricky to get up and running with, and it's expensive, and the licensing and price makes it difficult to use a hosted instance with it: you'll need to be dealing with sysadminning this yourself instead of using something like Postgres on Heroku or Mongo at MongoHQ
I'm sure I'm missing some on each side, and though I have 3 listed under disadvantages, I think that the advantages outweigh them in more circumstances where disadvantages don't preclude its use. Price is probably the one that will prevent its being used in most small projects (that you expect to outlast the 1 year free trial).
Cf. this short post describing Datomic simply for some more information.
Expressivity (c.f. Datalog) and immutability are awesome. It's SO much fun to work with Dataomic in that regard, and you can tell it's powerful just by using it a bit.
One important thing when considering if Datomic is the right fit for your application is to think about shape of the data you are going to store and query - as Datomic facts are actually very similar to RDF triples (+ first class time notion) it lends itself very good to modeling complex relationships (linked graph data) - something which is often cumbersome with traditional SQL databases.
I found this aspect to be one of the most appealing and important for me, it worked really well, even if this is of course not something exclusive to Datomic, as there are many other high-quality offerings for graph databases, one must mention Neo4J when we are talking about JVM based solutions.
Regarding Datomic schema, i think it's just the right balance between flexibility and stability.
To complete the above answers, I'd like to emphasize that immutability and the ability to remember the past are not 'wizardry features' suited to a few special case like auditing. It is an approach which has several deep benefits compared to 'mutable cells' databases (which are 99% of databases today). Stuart Halloway demonstrates this nicely in this video: the Impedance Mismatch is our fault.
In my personal opinion, this approach is fundamentally more sane conceptually. Having used it for several months, I don't see Datomic has having crazy magical sophisticated powers, rather a more natural paradigm without some of the big problems the others have.
Here are some features of Datomic I find valuable, most of which are enabled by immutability:
because reading is not remote, you don't have to design your queries like an expedition over the wire. In particular, you can separate concerns into several queries (e.g find the entities which are the input to my query - answer some business question about these entities - fetch associated data for presenting the result)
the schema is very flexible, without sacrificing query power
it's comfortable to have your queries integrated in your application programming language
the Entity API brings you the good parts of ORMs
the query language is programmable and has primitives for abstraction and reuse (rules, predicates, database functions)
performance: writers impede only other writers, and no one impedes readers. Plus, lots of caching.
... and yes, a few superpowers like travelling to the past, speculative writes or branching reality.
Regarding when not to use Datomic, here are the current constraints and limitations I see:
you have to be on the JVM (there is also a REST API, but you lose most of the benefits IMO)
not suited for write scale, nor huge data volumes
won't be especially integrated into frameworks, e.g you won't currently find a library which generates CRUD REST endpoints from a Datomic schema
it's a commercial database
since reading happens in the application process (the 'Peer'), you have to make sure that the Peer has enough memory to hold all the data it needs to traverse in a query.
So my very vague and informal answer would be that Datomic is a good fit for most non-trivial applications which write load is reasonable and you don't have a problem with the license and being on the JVM.
As an analogy, you can ask yourself the same question for Git as compared to other version control systems which are not based on immutability.
Just to tentatively add over the other answers:
It is probably fair to say datomic presents the better conceptual framework for a queryable data store of all other current options out there, while being partially scalable and not exceptionally performant.
I say only partially scalable, because queries need to fit in the peer RAM or fail. And not exceptionally performant, as top-notch SQL engines can optimize queries to fit in memory through sophisticated execution plans, something I've not yet seen mentioned as a feature in datomic; Datomic's decoupling of transacting and querying might in the overall offset this feature.
Unlike many NoSQL engines though, transactions are a first-class citizen, which puts it at par with RDBMS systems in that key regard.
For applications where data is read more than being written, transactions are needed, queries always fit in memory or memory is very cheap, and the overall size of accumulated data isn't too large, it might be a win where a commercial-only product can be afforded ― for those who are willing to embrace its novel conceptual framework implied in the API.

MapReduce in Relational database management system (RDBMS)

How come I've never heard of the term MapReduce when using relational database (RDBMS)? And now suddenly with NoSQL MapReduce is everywhere. I would just like to understand in general sense why there's no MapReduce concept in relational database and why NoSQL needs it. Thanks.
Judging by what the Wiki article you linked to has to say, MapReduce is an implementation technique. One of many possible others.
The relational model was invented precisely so that implementation techniques could be abstracted away from the user.
It is quite telling that certain people now start "movements" that promote exposing the implementation techniques again to the user, and it is even more telling that they call that "progress".
People who know and understand the relational model, also understand that in a truly relational DBMS, there is nothing to stop the engine from applying exactly those very same MapReduce techniques under the covers, when dealing with "BigRelations".
https://www.coursera.org/#course/bigdata

Backend for Web Development using Clojure/ClojureScript

I'm familiar with developing desktop apps in Clojure (written a multithreaded interactive visualization system). However, I'm fairly new to Web development using Clojure.
I plan to use Clojure on the server for handling logic; and ClojureScript for handing client side work. However, I don't know what to use for my database server. Should I use something like Monogodb? or Hadoop? Or .... ?
The app is something very simple; a basic forum. Total number of concurrent users will be < 100 at a given time. One thing that is important to me is the ability to easily backup / data consistency -- it's very very important to me that I can easily make daily backups (and not lose all the data.)
Thanks!
You can use many databases; if the database has an API for Java, you should be good to go. MySQL, MongoDB, Postgres, Hadoop… and more.
For a nice overview of the webstack in Clojure, check out brehaut's article on the matter.
For getting up and running quickly with Clojure and ClojureScript, try ClojureScriptOne.
There are many ways to write what you want to write; if you're already familiar with Clojure, it shouldn't be too hard to get going.
Haven't used it myself, but Datomic ( http://datomic.com/ ) looks great for anyone coming from Clojure.
Datomic is an amazing database, and I'd highly recommend it. It has many features which set it apart from other database systems:
Like Clojure's data structures, it's persistent, meaning that by default, adding new facts to the database doesn't delete old facts, allowing you to query the state of the database at a previous point in time, enhancing audit-ability and assistance in debugging.
The underlying Entity Attribute Value (EAV/triple) data model (at least partly inspired by RDF & the Semantic Web), is extremely flexible, allowing you to express arbitrary graph structures and effortlessly deal with polymorphism.
The query language is flavor of Datalog, a sort of pattern matching based query language strictly more expressive than SQL and the like in that it can do recursive queries, making it particularly well suited for dealing with graph data/queries.
In addition to Datalog queries, there's a pull api, which let's you pull data out of the database more simply using a GraphQL like expression which specifies the shape of a document-like structure you'd like to pull out of the database. These queries can even be used from within the :find clause of a Datalog query.
You can use Clojure functions from within your queries.
The indexing system is very smart and more or less automatic, in stark contrast with the work that typically goes into tuning SQL databases for performance.
Transactions go through a different API/function call than queries, meaning that the number one security risk identified by OWASP (SQL injection) is literally impossible in Datomic.
The transactor/read-replica design makes it super easy to scale reads/queries, while keeping pressure off the transactor.
It's fun as hell.
One of the things worth pointing out here is that by embracing the EAV data model and datalog/pull queries, Datomic ends up having structural flexibility closer to that of a NoSQL database, while still being fundamentally relational, and even more expressive in it's relational queries than SQL.
It's amazing and you should absolutely give it a shot. It will melt your brain a little. In the good way.
It's also worth noting that it's popularity has inspired a number of successful open source projects, so the underlying approach is not going anywhere any time soon:
DataScript: In memory clj/cljs partial implementation
Datahike: Fork of DataScript which queries over on disk indices, meaning you don't have to keep everything in memory to query
Mentat: Mozilla project trying to make a Datomic-alike for a Mozilla project

What kind of databases are used on the cloud and what are the concepts behind?

I was reading this article . And the guy mentioned "Relational databases are no longer the norm in the cloud." What does he mean by that? If Relational databases are not used what kind of databases are we going to use and what is the concept behind?
The link to your article is missing. However, I suspect that the author is referring to various forms of "NoSQL" dbs, such as key-value stores, document-based databases, object-based databases, and various other technologies. The main advantage of this approach is that full relational capabilities of a RDBMS are not always needed, and if you discard them, you can sometimes improve performance and scalability.
For example, Amazon offers the Amazon Simple DB, which is basically a giant distributed dictionary with a nicer query language.
I could go on, but I suspect a few searches for NoSQL would be more useful than anything I could write.

Performance comparison of RDF storage vs traditional database

Has someone experiment RDF storage solution like Sesame? I'm looking for performance review of this kind of solution compared to the traditional database solution.
There are plenny scalabity reports and benchmarks on the web about various triple-stores.
Here is a fine scalability report.
W3C itself maintain a wiki with lots of information about Large Triplestores and Benchmarks.
Follow these 3 links and take a time to read it. It's very informative. :)
I've used sesame extensively in my projects at work. I've found it to be speedy and reliable enough for most situations I find myself in. It has definitely outperformed Jena's storage solutions on a variety of fronts. Sesame 1.x has faster query performance than the 2.x version, but the 2.x version has some nice features such as contexts and sparql support.
If you are looking to use a traditional relational database, you could look at something like D2RQ, or something like Owlgres (if you want inferencing).
One intuition is that if you have a very large number of entities, tuple stores can save yourself the trouble of having your indexes routinely knocked out of memory as you switch between tables, and instead always have the first couple levels of the tuple index in RAM.

Resources