Flink-RocksDB behaviour after task manager failure - apache-flink

I am experimenting with my new Flink cluster(3 Different Machines-> 1 Job Manager, 2-> Task Managers) using RocksDB as State Backend however the checkpointing behaviour I am getting is a little confusing.
More specifically, I have designed a simple WordCount example and my data source is netcat. When I submit my job, the job manager assigns it to a random task manager(no replication as well). I provide some words and then I kill the currenlty running task manager. After a while, the job restarts in the other task manager and I can provide some new words. The confusing part is that state from the first task manager is preserved even when I have killed it.
To my understanding, RocksDB maintains its state in a local directory of the running task manager, so what I expected was when the first task manager was killed to lose the entire state and start counting words from the beginning. So Flink seems to somehow maintain its state in the memory(?) or broadcasts it through JobManager?
Am I missing something?

The RocksDB state backend does keep its working state on each task manager's local disk, while checkpoints are normally stored in a distributed filesystem.
If you have checkpointing enabled, then the spare task manager is able to recover the state from the latest checkpoint and resume processing.

Related

Flink task managers are not processing data after restart

I am new to flink and i deployed my flink application which basically perform simple pattern matching. It is deployed in Kubernetes cluster with 1 JM and 6 TM. I am sending messages of size 4.4k and 200k messages every 10 min to eventhub topic and performing load testing. I added restart strategy and checking pointing as below and i am not explicitly using any states in my code as there is no requirement for it
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// start a checkpoint every 1000 ms
env.enableCheckpointing(interval, CheckpointingMode.EXACTLY_ONCE);
// advanced options:
// make sure 500 ms of progress happen between checkpoints
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000);
// checkpoints have to complete within one minute, or are discarded
env.getCheckpointConfig().setCheckpointTimeout(120000);
// allow only one checkpoint to be in progress at the same time
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// enable externalized checkpoints which are retained after job cancellation
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// allow job recovery fallback to checkpoint when there is a more recent savepoint
env.getCheckpointConfig().setPreferCheckpointForRecovery(true);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
5, // number of restart attempts
Time.of(5, TimeUnit.MINUTES) // delay
));
Initially i was facing Netty server issue with network buffer and i followed this link https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#taskmanager-network-memory-floating-buffers-per-gate flink network and heap memory optimizations and applied below settings and everything is working fine
taskmanager.network.memory.min: 256mb
taskmanager.network.memory.max: 1024mb
taskmanager.network.memory.buffers-per-channel: 8
taskmanager.memory.segment-size: 2mb
taskmanager.network.memory.floating-buffers-per-gate: 16
cluster.evenly-spread-out-slots: true
taskmanager.heap.size: 1024m
taskmanager.memory.framework.heap.size: 64mb
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.framework.off-heap.size: 64mb
taskmanager.memory.network.fraction: 0.4
taskmanager.memory.jvm-overhead.min: 256mb
taskmanager.memory.jvm-overhead.max: 1gb
taskmanager.memory.jvm-overhead.fraction: 0.4
But i have two below questions
If any task manager restarts because of any failures the task manager is restarting successfully and getting registered with job manager but after the restarted task manager don't perform any processing of data it will sit idle. Is this normal flink behavior or do i need to add any setting to make task manager to start processing again.
Sorry and correct me if my understanding is wrong, flink has a restart strategy in my code i made limit 5 attempts of restart. What will happen if my flink job is not successfully overcomes the task failure entire flink job will be remained in idle state and i have to restart job manually or is there any mechanism i can add to restart my job even after it crossed the limit of restart job attempts.
Is there any document to calculate the number of cores and memory i should assign to flink job cluster based on data size and rate at which my system receives the data ?
Is there any documentation on flink CEP optimization techniques?
This is the error stack trace i am seeing in job manager
I am seeing the below errors in my job manager logs before the pattern matching
Caused by: org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException: Connection unexpectedly closed by remote task manager '/10.244.9.163:46377'. This might indicate that the remote task manager was lost.
at org.apache.flink.runtime.io.network.netty.CreditBasedPartitionRequestClientHandler.channelInactive(CreditBasedPartitionRequestClientHandler.java:136)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:236)
at org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInputClosed(ByteToMessageDecoder.java:393)
at org.apache.flink.shaded.netty4.io.netty.handler.codec.ByteToMessageDecoder.channelInactive(ByteToMessageDecoder.java:358)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.fireChannelInactive(AbstractChannelHandlerContext.java:236)
at org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline$HeadContext.channelInactive(DefaultChannelPipeline.java:1416)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:257)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannelHandlerContext.invokeChannelInactive(AbstractChannelHandlerContext.java:243)
at org.apache.flink.shaded.netty4.io.netty.channel.DefaultChannelPipeline.fireChannelInactive(DefaultChannelPipeline.java:912)
at org.apache.flink.shaded.netty4.io.netty.channel.AbstractChannel$AbstractUnsafe$8.run(AbstractChannel.java:816)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.AbstractEventExecutor.safeExecute(AbstractEventExecutor.java:163)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:416)
at org.apache.flink.shaded.netty4.io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:515)
at org.apache.flink.shaded.netty4.io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:918)
at org.apache.flink.shaded.netty4.io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
at java.lang.Thread.run(Thread.java:748)
Thanks in advance, please help me in resolving my doubts
Various points:
If your patterns involve matching temporal sequences (e.g., "A followed by B"), then you need state to do this. Most of Flink's sources and sinks also use state internally to record offsets, etc., and this state needs to be checkpointed if you care about exactly-once guarantees. If the patterns are being streamed in dynamically, then you'll want to store the patterns in Flink state as well.
Some of the comments in the code don't match the configuration parameters: e.g., "500 ms of progress" vs. 1000, "checkpoints have to complete within one minute" vs 120000. Also, keep in mind that the section of the documentation that you copied these settings from is not recommending best practices, but is instead illustrating how to make changes. In particular, env.getCheckpointConfig().setPreferCheckpointForRecovery(true); is a bad idea, and that config option should probably not exist.
Some of your entries in config.yaml are concerning. taskmanager.memory.managed.fraction is rather large (0.7) -- this only makes sense if you are using RocksDB, since managed memory has no other purpose for streaming. And taskmanager.memory.network.fraction and taskmanager.memory.jvm-overhead.fraction are both very large, and the sum of these three fractions is 1.5, which doesn't make sense.
In general the default network configuration works well across a wide range of deployment scenarios, and it is unusual to need to tune these settings, except in large clusters (which is not the case here). What sort of problems did you encounter?
As for your questions:
After a TM failure and recovery, the TMs should automatically resume processing from the most recent checkpoint. To diagnose why this isn't happening, we'll need more information. To gain experience with a deployment that handles this correctly, you can experiment with the Flink Operations Playground.
Once the configured restart strategy has played itself out, the job will FAIL, and Flink will no longer try to recover that job. You can, of course, build your own automation on top of Flink's REST API, if you want something more sophisticated.
Documentation on capacity planning? No, not really. This is generally figured out through trial and error. Different applications tend to have different requirements in ways that are difficult to anticipate. Things like your choice of serializer, state backend, number of keyBys, the sources and sinks, key skew, watermarking, and so on can all have significant impacts.
Documentation on optimizing CEP? No, sorry. The main points are
do everything you can to constrain the matches; avoid patterns that must keep state indefinitely
getEventsForPattern can be expensive

Is state saved in TaskManager's memory regardless of state back end?

I know I can set the state backend both in the flink's configuration file(flink-conf.yaml) globally
or set in the per-job scope.
val env = StreamExecutionEnvironment.getExecutionEnvironment()
env.setStateBackend(new FsStateBackend("hdfs://namenode:40010/flink/checkpoints"))
I have one question here:
Where are the state data that belongs to the TasManager saved in TaskManager while the flink job keeps running? I mean that when one checkpoint is done,the checkpointed data will be saved in HDFS(chk-XXX) or RocksDB, but while the flink job keeps running, the taskManager will accumulate more and more states belonging to this task manager, are they always saved in memory?
If they are kept in memory, then the checkpoint data can't be too large,or else OOM may occur.
Can I use RocksDB in TaskManager process to save the TM's states data? Thanks!
With the FsStateBackend, the working state for each task manager is in memory (on the JVM heap), and state backups (checkpoints) go to a distributed file system, e.g., HDFS.
With the RocksDBStateBackend, the working state for each task manager is in a local RocksDB instance, i.e., on the local disk, and again, the state backups (checkpoints) go to a distributed file system, e.g., HDFS.
Flink never stores checkpoint data in RocksDB. That's not the role it plays. RocksDB is used as an ephemeral, embedded data store whose contents can be lost in the event that a task manager fails. This is an alternative to keeping the working state in memory (where it can also be lost when a task manager fails).

Flink production session cluster in EKS instance failure and recovery

I am newbie in Flink, planning to deploy Flink session cluster on EKS with 1 job manager and 5 task managers (each task managers with 4 slots). Different jobs will be submitted through UI for different usecase.
Let's say I have submitted a stateful job (job has simple counter logic using RichFlatMapFunction) backed by RocksDBStateBackend with S3 checkpointDataUri and DbStoragePath pointed to local file path and this job utilises 8 slot totally which is spreaded across two task managers and running fine without any issues for a day. Now following are my question,
1) My understanding about checkpointDataUri and DbStoragePath in RocksDBStateBackend is, checkpointDataUri stores the processed offset information in S3 (since I configured the checkpointDataUri with S3 prefix) and DbStoragePath contains all the state information which is used in RichFlatMapFunction. So all the stateful information are stored in checkpointDataUri which is available in local only. Please correct me If it is wrong.
2) Lets say my Ec2 instance was restarted (the one where the 4 slots was utilised) for some reason and it took around 30 minutes to come online, in this case, EKS will make the new Ec2 instance as TaskManager to match the replicas, however whether Flink job manager will try to reschedule the 4 slots to a different task manager now? If yes, how the state which was stored in Ec2 local instance has to be recovered?
3) Is there is any document/video for Flink EKS failure recovery related things. I saw the official documentation which specifies how to deploy Flink session cluster in EKS. But I don't find anything related to failure recovery in EKS mode. Could someone please point me in the right direction on this?
All of the state you are concerned about, namely the processed offsets and the state used in the RichFlatMapFunction (and any other state Flink is managing for your job) is stored both on the local disk (DbStoragePath) and in S3 (checkpointDataUri).
Flink always keeps a working copy of all of the state local to each task manager (for high throughput and low latency), and in the background makes complete copies of this state to a distributed file system (like S3) for reliability.
In other words, what you said in point (1) of your question was incorrect. And the answer to point (2) is that the state to be recovered can always be recovered from S3 if it's not available locally. As for point (3), there's nothing special about failure recovery on EKS compared to any other Flink deployment model.

What would happen if I configured a local file system for Flink checkpointing?

I have saw a video named Managing State in Apache Flink - Tzu-Li (Gordon) Tai.
In this video, it stores data with distributed file system.
I'm wondering that what would happen if I configured a local file system for Flink checkpointing?
eg:
env.setStateBackend(new RocksDBStateBackend(getString("flie:///tmp/checkpoints"), true));
I assume that every node of Flink cluster will keep their own data. Would it work well?
I assume that every node of Flink cluster will keep their own data.
That is correct.
Would it work well?
With a local file system and distributed nodes you would may be able to checkpoint just fine (even that is not certain, as the directory may be getting created by the JobManager so the TaskManager instances potentially will fail with the directory not existing) however you would not be able to restore, as the JobManager reads that and distributes that out to the operators as needed.
Strictly speaking, it does not matter if the file system is local or distributed to flink. What is important is that the JobManager as restore time is able to see all of the checkpoint data. If you are running with everything on the same machine, then a local file system would work just fine.
I think in principle you could even have all nodes write locally and then manually use a synchronization process to move the data to somewhere that the JobManager could see it during an attempted restore, however that is certainly not a recommended approach.

When are flink checkpoint files cleaned?

I have a streaming job that:
reads from Kafka --> maps events to some other DataStream --> key by(0) --> reduces a time window of 15 seconds processing time and writes back to a Redis sink.
When starting up, everything works great. The problem is, that after a while, the disk space get's full by what I think are links checkpoints.
My question is, are the checkpoints supposed to be cleaned/deleted while the link job is running? could not find any resources on this.
I'm using a filesystem backend that writes to /tmp (no hdfs setup)
Flink cleans up checkpoint files while it is running. There were some corner cases where it "forgot" to clean up all files in case of system failures.
But for Flink 1.3 the community is working on fixing all these issues.
In your case, I'm assuming that you don't have enough disk space to store the data of your windows on disk.
Checkpoints are by default not persisted externally and are only used to resume a job from failures. They are deleted when a program is cancelled.
If you are taking externalized checkpoints, then it has two policy
ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION: Retain the externalized checkpoint when the job is cancelled. Note that you have to manually clean up the checkpoint state after cancellation in this case.
ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION: Delete the externalized checkpoint when the job is cancelled. The checkpoint state will only be available if the job fails.
For more details
https://ci.apache.org/projects/flink/flink-docs-release-1.4/ops/state/checkpoints.html

Resources