Performance is *way* too slow with pubsub push -> app engine - google-app-engine

I have a requirement to process ~20k calls per second. My system processes lists of ~1M entries and performs multiple jobs for each item. It is very “bursty” in nature as it isn’t always processing a list. I added a App Engine flex env (with Rails), using automatic scaling, with an test endpoint to wait 5 seconds and return. I push to the pubsub topic and a push subscription sends to App Engine. Running this hits a steady state of 20-30 requests per second.
I guessed that the problem was the interaction of the pubsub push volume algorithm interacting with the App Engine, but then I ran a second test where I just blasted curl requests as in a loop with multiple processes. This also ran at 20-30 rps.
I’m stuck at this point and wondering how to proceed. How can I configure the system for higher performance? I need a performance of three orders of magnitude from what I see.
Thanks so much for helping!

My experience with pub/sub is that is really slow for single messaging processing. I'd guess that there's an overhead for being http. And the average time I see is around 40ms outside google and 20ms if you are running your code on google servers.
What worked for me is to batch messages instead, I was able to get up to 100k msgs/sec when batching them in 1k messages per publish.

Related

Why is Google Cloud Tasks so slow?

I use Google Cloud Tasks with AppEngine to process tasks, but the tasks wait about 2-3 minutes in the queue before being sent to my App Engine endpoint.
There is no "delay" set on the tasks, and I expect them to be sent right away.
So the question is: Is Cloud Tasks slow?
As you can see is the following screenshot, Cloud Tasks gives an ETA of about 3 mins:
The official word from Google is that this is the best you can expect from their task queues.
In my experience, how you configure tasks seems to influence how quickly they get executed.
It seems that:
If you don't change the default behavior of your task queues (e.g., maximum concurrent, etc.) and if you don't specify an execution time of a task (e.g., eta) then your tasks will execute very soon after submission.
If you mess with either of these two things, then Google takes longer to execute your tasks. My guess is that it is the extra overhead of controlling task rate and execution.
I see from your screenshot that you have a task with an ETA of 2 min 49 sec which is the time until your task will be run. You have high bucket size and concurrency numbers, so I think your issue has more to do with the parameters you are using when queueing your tasks, especially the scheduled_time attribute. Check your code to see if you are adding a delay to your tasks, and make sure to tune it down.
Just adding here, that as of February 2023, I can queue tasks and then consume them VERY fast using the Python 3.7 libraries.
Takes me about 13.5 seconds to queue up 1000 tasks.
Takes about 1 minute to process those 1000 tasks using a Cloud Run deployed python/flask app. (No other processing done, just receive and reply with 200).
So, super fast!
BTW, pubsub was much slower in my tests... about 40ms per message to queue a message.

How to Gain Visibility and Optimize Quota Usage in Google App Engine?

How do I go about optimizing my Google App Engine app to reduce instance hours I am currently using/paying for?
I have been using app engine for a while and the cost has been creeping upwards. I now spend enough on GAE to invest time into reducing the expense. More than half of my GAE bill is due to frontend instance hours, so it's the obvious place to start. But before I can start optimizing, I have to figure out what's using the instance hours.
However, I am having difficulty trying to determine what is currently using so many of my frontend instance hours. My app serves many ajax requests, dynamic HTML pages, cron jobs, and deferred tasks. For all I know there could be some runaway process that is causing my instance usage to be so high.
What methods or techniques are available to allow me to gain visibility into my app to see where I am using instance hours?
Besides code changes (all suggestions in the other answer are good) you need to look into the instances over time graph.
If you have spikes and constant use, the instances created during the spikes wont go to sleep because appengine will keep using them. In appspot application settings, change the "idle instances" max to a low number like 1 (or your actual daily average).
Also, change min latency to a higher number so less instances will be created on spikes.
All these suggestions can make an immediate effect on lowering your bill, but its just a complement to the code optimizations suggested in the other answer.
This is a very broad question, but I will offer a few pointers.
First, examine App Engine's console Dashboard and logs. See if there are any errors. Errors are expensive both in terms of lost business and in extra instance hours. For example, tasks are retried several times, and these reties may easily prolong the life of an instance beyond what is necessary.
Second, the Dashboard shows you the summary of your requests over 24 hours period. Look for requests with high latency. See if you can improve them. This will both improve the user experience and may reduce the number of instance hours as more requests can be handled by each instance.
Also look for data points that surprise you as a developer of your app. If you see a request that is called many more times that you think is normal, zero in on it and see what it is happening.
Third, look at queues execution rates. When you add multiple tasks to a queue, do you really need all of them to be executed within seconds? If not, reduce the execution rate so that the queue never needs more than one instance.
Fourth, examine your cron jobs. If you can reduce their frequency, you can save a bunch of instance hours. If your cron jobs must run frequently and do a lot of computing, consider moving them to a Compute Engine instance. Compute Engine instances are many times cheaper, so having such an instance run for 24 hours may be a better option than hitting an App Engine instance every 15 minutes (or even every hour).
Fifth, make sure your app is thread-safe, and your App Engine configuration states so.
Finally, do the things that all web developers do (or should do) to improve their apps/websites. Cache what can be cached. Minify what needs to be minified. Put images in sprites. Split you code if it can be split. Use Memcache. Etc. All of these steps reduce latency and/or client-server roundtrips, which helps to reduce the number of instances for the same number of users.
Ok, my other answer was about optimizing at the settings level.
To trace the performance at a granular level use the new cloud trace relased today at google i/o 2014.
http://googledevelopers.blogspot.com/2014/06/cloud-platform-at-google-io-enabling.html

When does Google App Engine start or stop an instance?

We have an App Engine app that handles an average .5 requests per second, and seemingly all those requests can be handled by the same instance running a Go app as the main version.
However, sometimes App Engine kicks off a second instance (and sometimes even a third one), that doesn't seem to do anything past handling one or two requests. Here's an example.
Shutting down that instance manually doesn't seem to cause any harm, so my question is, why does App Engine not kill the instance after it did not get any requests for a while? (The above example had four requests in the past hour, often the requests/age ratio gets even lower).
Update:
A similar situation is when an instance is started on a different version. App Engine only seems to kill the instance after hours of not getting any requests.
Under Application Settings → Performance,
Idle Instances is set to Automatic – 20
Pending Latency is set to 150ms – 250ms
I wish I knew what controls if/when it kills idle instances, but I can't see any documentation of it.
To avoid excess instances starting, I think the main thing you can do here is increase the pending latency:
The Pending Latency slider controls how long requests spend in the pending queue before being served by an Instance of the default version of your application. If the minimum pending latency is high App Engine will allow requests to wait rather than start new Instances to process them. This can reduce the number of instance hours your application uses, but can result in more user-visible latency.
Even if you only average 4 requests/hour, if you happen to get two closely spaced I suppose it's possible it would start a new instance.
You can also see some small amount of information in the logs about why it started a new instance.
The "How Applications Scale" section of the Google App Engine documentation states:
Scaling in Instances
Each instance has its own queue for incoming requests. App Engine monitors the number of requests waiting in each instance's queue. If App Engine detects that queues for an application are getting too long due to increased load, it automatically creates a new instance of the application to handle that load.
App Engine also scales instances in reverse when request volumes decrease. This scaling helps ensure that all of your application's current instances are being used to optimal efficiency and cost effectiveness.
It also states you can "specify a minimum number of idle instances", and to "optimize for high performance or low cost" in the administration console.
Try setting the "Idle instances" field to something like 3 - 5, and "optimize for low cost" and see if that affects the instance kill time.

Preparing for a flash crowd on Google App Engine

I recently experienced a sharp, short-lived increase in the load of my service on Google App Engine. The load went from ~1-2 req/second to about 10 req/second for about a couple of hours. My number of dynamic instances scaled up pretty quickly but in the process I did get a number of "Request waited too long" timeout messages.
So the next time around, I would like to be prepared with enough idle instances to handle my load. But now the question is, how do I determine how many is adequate. I expect a much larger burst in load this time - from practically nothing to an average of 500 requests/second, possibly with a peak of 3000. This is to last between 15 minutes and 1 hour.
My main goal is to ensure that the information passed via HTTP Post is saved to the datastore by means of a single write.
Here are the steps I have taken to prepare for the burst:
I have pruned the fast path to disable analytics and other reporting, which typically generate 2 urlfetch requests.
The datastore write is to be deferred to a taskqueue via the deferred library
What I would like to know is:
1. Tips/insights into calculating how many idle instances one would need per N requests/second.
2. It seems that the maximum throughput of a task queue is 500/second. Is this the rate at which you can push tasks, and if not, then is there a cap on that? I'm guessing not, since these are probably just datastore writes, but I would like to be sure.
My fallback plan if I am not confident of saving all of the information for this flash mob is to set up a beefy Amazon EC2 instance, run a web server on it and make my clients send a backup request to this server.
You must understand that Idle Instances are only used when new frontend instances are being spun-up. This means that they are only used during traffic increases. When traffic is steady they are not used.
Now if your instance needs 20 sec to spin up and can handle 10 req/sec of steady traffic and you traffic INCREASE is 5 req/sec, then you'll need 20 * 5 / 10 = 10 idle instances if you don't want any requests dropped.
What you should do is:
Maximize instance throughput (number of requests it can handle): optimize code, use async db operations and enable Concurrent Requests.
Minimize your instance startup time. This is important because idle instances are used during spinning up of new instances and the time it takes to spin up a new instance directly relates to how many idle instances you need. If you use Java this means getting rid of any heavy frameworks that do classpath scanning (Spring, etc..).
Fourth, number of frontend instances needed is VERY application specific. But since you already had traffic increase you should know how many requests your frontend instance can handle per second.
Edit: There is one more obvious thing you should do: HTTP caching. GAE has a transparent HTTP cache which can be simply controlled via Cache-Control headers.
Also, if analytics has a big performance impact on your server, consider using client side analytics services (like Google Analytics). They also work for devices.

how many users in a GAE instance?

I'm using the Python 2.5 runtime on Google App Engine. Needless to say I'm a bit worried about the new costs so I want to get a better idea of what kind of traffic volume I will experience.
If 10 users simultaneously access my application at myapplication.appspot.com, will that spawn 10 instances?
If no, how many users in an instance? Is it even measured that way?
I've already looked at http://code.google.com/appengine/docs/adminconsole/instances.html but I just wanted to make sure that my interpretation is correct.
"Users" is a fairly meaningless term from an HTTP point of view. What's important is how many requests you can serve in a given time interval. This depends primarily on how long your app takes to serve a given request. Obviously, if it takes 200 milliseconds for you to serve a request, then one instance can serve at most 5 requests per second.
When a request is handled by App Engine, it is added to a queue. Any time an instance is available to do work, it takes the oldest item from the queue and serves that request. If the time that a request has been waiting in the queue ('pending latency') is more than the threshold you set in your admin console, the scheduler will start up another instance and start sending requests to it.
This is grossly simplified, obviously, but gives you a broad idea how the scheduler works.
First, no.
An instance per user is unreasonable and doesn't happen.
So you're asking how does my app scale to more instances? Depends on the load.
If you have much much requests per second then you'll get (automatically) another instance so the load is distributed.
That's the core idea behind App Engine.

Resources