Highstock - How to handle large data sets - dataset

I've got a highstock going where I query my database for data. My dataset isn't big yet, but I forsee it growing to have hundreds of thousands of data points. That's a lot of data! There's no way I'm going to pass that back through a call back.
I figure there's got to be a way to handle this. Perhaps you can pass arguments to the query function/.php? I've looked at #plotOptions.series.dataGrouping, but that still requires an original full data set.
How do the big cats do it? How do Yahoo & Googs store discrete stock ticker data for XX years? After N time, do they take the historic data, approximate it, and reduce the resolution? If someone could point me in the right direction, I'm sure it's already been covered before, but a few searches didn't turn anything up.
Thanks,
-CD

Usually it doesn't make sense to know the values from one year ago with minute-resolution. It depends on you application, but if the purpose is to provide finantial information, I think that it is OK to assume that fine resolution is only interesting on recent dates. The same consideration applies to logging performance counters (such as MRTG does), and many other things.
For instance, you can mantain:
A "last week" serie, with 1-minute resolution.
A "last trimester" serie, with hour-resoultion.
A historic serie, with daily resolution.
All but the finest series should store not only the average, but also the minimum and maximum values observed in each period, as well as other statistics indictators that might be of interest.

Related

Suggestions on how to store and retrieve time-series data

I am currently working on a project that requires us to store a large amount of time series data, but more importantly, retrieve large amounts of it quick.
There will be N devices (>10,000) which will periodically send data to the system, lets say every 5 seconds. This data will quickly build up, but we are generally only interested in the most recent data, and want to compact the older data. We don't want to remove it, as it is still useful, but instead of having thousands of data point for a day, we might save just 5 or 10 after N days/weeks/months have passed.
Specifically we want to be able to fetch sampled data over a large time period, say a year or two. There might be millions of points here, but we just want a small, linearly distributed, sample of this data.
Today we are experimenting with influxdb, which initially seemed like an alright solution. It was fast enough and allows us to store our data in a reasonable structure, but we have found that it is not completely satisfactory. We were unable to perform the sample query described above and in general the system does not feel mature enough for us.
Any advice on how we can proceed, or alternative solutions, is much appreciated.
You might be interested in looking at TimescaleDB:
https://github.com/timescale/timescaledb
It builds a time-series DB on top of Postgres and so offers full SQL support, as well as generally the Postgres ecosystem/reliability. This can give you a lot greater query flexibility, which sounds like you want.
In terms of your specific use case, there would really be two solutions.
First, what people typically would do is to create two "hypertables", one for raw data, another for sampled data. These hypertables look like standard tables to the user, although heavily partitioned under the covers for much better scalability (e.g., 20x insert throughput vs. postgres for large table sizes).
Then you basically do a roll-up from the raw to the sampled table, and use a different data retention policy on each (so you keep raw data for say 1 month, with sampled data for years).
http://docs.timescale.com/getting-started/setup/starting-from-scratch
http://docs.timescale.com/api/data-retention
Second, you can go with a single hypertable, and then just schedule a normal SQL query to delete individual rows from data that's older than a certain time period.
We might even in the future add better first-class support for this latter approach if it becomes a common-enough requested feature, although most use cases we've encountered to date seemed more focused on #1, esp. in order to to keep statistical data about removed data-points, as opposed to just straight samples.
(Disclaimer: I'm one of the authors of TimescaleDB.)

How to store and retrieve large numbers of data points for graphical visualization?

I'm thinking about building a web-based data logging and visualization service. The basic idea is that at some timed interval something (e.g. a sensor) reports a value (e.g. temperature) to the server. The server records this value into a database. There would be a web-based UI that allows me to view this data on a time-based graph. Ideally this graph would have various resolutions (last 30 seconds, last week, last year, etc). In a super ideal world, I would be able to zoom into the data for any point in time.
The problem is that the sensors are going to generate enormous amounts of data. For example, a sensor that reports a value every 5 seconds will generate about 18k values a day. I'm imagining a system that has thousands of sensors. Over time, this becomes lots of data.
The naive solution is to throw this data into a relational database and retrieve it in the various ways I want, but that won't scale.
The simple solution is to reduce the amount of data by performing periodic roll-ups of the data. New data might go into a table that has data points every 5 seconds. Every hour, some system pumps this data into another table that has data points every minute and the original data is deleted. This repeats for a few levels. The downside to this is that the further back in time you go, the less detailed the data is. That's probably fine. I would imagine that I would need enormous amounts of hardware to support full resolution of data over all time as compared to a system with this sort of rollup.
Is there a better way to do this? Is there an existing solution? I have to imagine this is a fairly common problem.
You probably want a fixed sized database like RRDTool: http://oss.oetiker.ch/rrdtool/
Also Graphite is built on top of a similar datastore implementation: http://graphite.wikidot.com/

Database System for timeseries & aggregation

I'm currently creating a raspberry pi based logging device for logging the power which is fed into the grid by a solar array.
The "main table" will be growing at ~ 20 entries representing the "current" power produced by several parts of the array.
Basically this isn't that much and can be handled at an acceptable performance using a raspberry pi, but with a growing amount of data queries like "select last 10 years, group by month" probably wouldn't be very effective... (the data should be displayed via an interactive web interface)
I thought of doing some "background aggregation" and maintaining several tables for containing the aggregated data of various timeframes, but this seems like a problem which probably has been dealt with by many people before.
What do you suggest me to do?
You do not know how much data growth is needed to affect performance.
You do not know by how much performance will be affected then.
You do not know if performance will be affected at all.
As long as you do not have even an estimate of how much performance improvement you need, it does not make sense to try to do optimizations.
Or, as said by Donald Knuth:
premature optimization is the root of all evil
If you really do want to create caches of aggregated values, I'd suggest to use triggers to keep the cache consistent after any change to the original data.

how to continuously "move" lat/lon pairs in a database?

I'm designing a project where I'll be storing (potentially hundreds of thousands of) lat/lon pairs in a database. The pairs are associated with other data. The catch is that in addition to users manipulating this data, I also want the locations to change over time. My initial instinct was to set up a cron job that will adjust every lat/lon by a certain amount every day, but I realize that such an operation would be insanely inefficient.
So, any ideas on how to efficiently adjust a bunch of lat/lon pairs over time? My best thought so far is associating a "last changed" timestamp with each pair and have a process running that fires every few seconds, grabs n (maybe order 100? 1000?) pairs with the oldest timestamps, adjusts those pairs and updates the times. This way I'm constantly moving small amounts of data, instead of moving an overwhelming amount once a day. I'm still not convinced this is the best way to go, though.
Thanks in advance!
Store the amount that is added to each pair somewhere else, and rather than using the values in the database directly, add this stored offset amount whenever you retrieve and subtract it whenever you insert.
Your instinct is right, that probably is the best way of adjusting latitude longitude gradually. The update query shouldn't hammer the server too hard though, and your not moving- Just changing?

2 Questions about Philosophy and Best Practices in Database Development

Which one is best, regarding the implementation of a database for a web application: a lean and very small database with only the bare information, sided with a application that "recalculates" all the secondary information, on demand, based on those basic ones, OR, a database filled with all those secondary information already previously calculated, but possibly outdated?
Obviously, there is a trade-of there and I think that anyone would say that the best answer to this question is: "depends" or "is a mix between the two". But I'm really not to comfortable or experienced enough to reason alone about this subject. Could someone share some thoughts?
Also, another different question:
Should a database be the "snapshot" of a particular moment in time or should a database accumulate all the information from previous time, allowing the retrace of what happened? For instance, let's say that I'm modeling a Bank Account. Should I only keep the one's balance on that day, or should I keep all the one's transactions, and from those transactions infer the balance?
Any pointer on this kind of stuff that is, somehow, more deep in database design?
Thanks
My quick answer would be to store everything in the database. The cost of storage is far lower than the cost of processing when talking about very large scale applications. On small scale applications, the data would be far less, so storage would still be an appropriate solution.
Most RDMSes are extremely good at handling vast amounts of data, so when there are millions/trillions of records, the data can still be extracted relatively quickly, which can't be said about processing the data manually each time.
If you choose to calculate data rather than store it, the processing time doesn't increase at the same rate as the size of data does - the more data ~ the more users. This would generally mean that processing times would multiply by the data's size and the number of users.
processing_time = data_size * num_users
To answer your other question, I think it would be best practice to introduce a "snapshot" of a particular moment only when data amounts to such a high value that processing time will be significant.
When calculating large sums, such as bank balances, it would be good practice to store the result of any heavy calculations, along with their date stamp, to the database. This would simply mean that they will not need calculating again until it becomes out of date.
There is no reason to ever have out of date pre-calulated values. That's what trigger are for (among other things). However for most applications, I would not start precalculating until you need to. It may be that the calculation speed is always there. Now in a banking application, where you need to pre-calculate from thousands or even millions of records almost immediately, yes, design a precalulation process bases on triggers that adjust the values every time they are changed.
As to whether to store just a picture in time or historical values, that depends largely on what you are storing. If it has anything to do with financial data, store the history. You will need it when you are audited. Incidentally, design to store some data as of the date of the action (this is not denormalization). For instance, you have an order, do not rely onthe customer address table or the product table to get data about where the prodcts were shipped to or what they cost at the time of the order. This data changes over time and then you orders are no longer accurate. You don't want your financial reports to change the dollar amount sold because the price changed 6 months later.
There are other things that may not need to be stored historically. In most applications we don't need to know that you were Judy Jones 2 years ago and are Judy Smith now (HR application are usually an exception).
I'd say start off just tracking the data you need and perform the calculations on the fly, but throughout the design process and well into the test/production of the software keep in mind that you may have to switch to storing the pre-calculated values at some point. Design with the ability to move to that model if the need arises.
Adding the pre-calculated values is one of those things that sounds good (because in many cases it is good) but might not be needed. Keep the design as simple as it needs to be. If performance becomes an issue in doing the calculations on the fly, then you can add fields to the database to store the calculations and run a batch overnight to catch up and fill in the legacy data.
As for the banking metaphor, definitely store a complete record of all transactions. Store any data that's relevant. A database should be a store of data, past and present. Audit trails, etc. The "current state" can either be calculated on the fly or it can be maintained in a flat table and re-calculated during writes to other tables (triggers are good for that sort of thing) if performance demands it.
It depends :) Persisting derived data in the database can be useful because it enables you to implement constraints and other logic against it. Also it can be indexed or you may be able to put the calculations in a view. In any case, try to stick to Boyce-Codd / 5th Normal Form as a guide for your database design. Contrary to what you may sometimes hear, normalization does not mean you cannot store derived data - it just means data shouldn't be derived from nonkey attributes in the same table.
Fundamentally any database is a record of the known facts at a particular point in time. Most databases include some time component and some data is preserved whereas some is not - requirements should dictate this.
You've answered your own question.
Any choices that you make depend on the requirements of the application.
Sometimes speed wins, sometimes space wins. Sometime data accuracy wins, sometimes snapshots win.
While you may not have the ability to tell what's important, the person you're solving the problem for should be able to answer that for you.
I like dynamic programming(not calculate anything twise). If you're not limited with space and are fine with a bit outdated data, then precalculate it and store in the DB. This will give you additional benefit of being able to run sanity checks and ensure that data is always consistent.
But as others already replied, it depends :)

Resources