How to limit google app engine instances to just one? - google-app-engine

I'm using go language and it seems good practice to communicate between different threads/routines by channels and locks instead of datastore. However, it appears that it's not possible between two instances if there's more than one instance running. Is there a way to make it not open a second one, even if there's high traffic?

To answer the question in the title:
Go to app dashboard, on left you will find a Application settings link. In the admin UI you will find two sliders, drag the first one at the very left and the second (Min pending Latency) to the max allowed value (right). And last but not least, optimize your request response time.
Even if you do the above there's no guarantee that GAE will not fire up a second instance.

You should use Backends if you want fine to control the spawning and shutdown of instances.

I don't think it is absolutely the right approach .. You have to think about scalability issues from the first day of your design .. As christopher said I would go with memcache!

Related

Identify why Google app engine is slow

I developed an application for client that uses Play framework 1.x and runs on GAE. The app works great, but sometimes is crazy slow. It takes around 30 seconds to load simple page but sometimes it runs faster - no code change whatsoever.
Are there any way to identify why it's running slow? I tried to contact support but I couldnt find any telephone number or email. Also there is no response on official google group.
How would you approach this problem? Currently my customer is very angry because of slow loading time, but switching to other provider is last option at the moment.
Use GAE Appstats to profile your remote procedure calls. All of the RPCs are slow (Google Cloud Storage, Google Cloud SQL, ...), so if you can reduce the amount of RPCs or can use some caching datastructures, use them -> your application will be much faster. But you can see with appstats which parts are slow and if they need attention :) .
For example, I've created a Google Cloud Storage cache for my application and decreased execution time from 2 minutes to under 30 seconds. The RPCs are a bottleneck in the GAE.
Google does not usually provide a contact support for a lot of services. The issue described about google app engine slowness is probably caused by a cold start. Google app engine front-end instances sleep after about 15 minutes. You could write a cron job to ping instances every 14 minutes to keep the nodes up.
Combining some answers and adding a few things to check:
Debug using app stats. Look for "staircase" situations and RPC calls. Maybe something in your app is triggering RPC calls at certain points that don't happen in your logic all the time.
Tweak your instance settings. Add some permanent/resident instances and see if that makes a difference. If you are spinning up new instances, things will be slow, for probably around the time frame (30 seconds or more) you describe. It will seem random. It's not just how many instances, but what combinations of the sliders you are using (you can actually hurt yourself with too little/many).
Look at your app itself. Are you doing lots of memory allocations in the JVM? Allocating/freeing memory is inherently a slow operation and can cause freezes. Are you sure your freezing is not a JVM issue? Try replicating the problem locally and tweak the JVM xmx and xms settings and see if you find similar behavior. Also profile your application locally for memory/performance issues. You can cut down on allocations using pooling, DI containers, etc.
Are you running any sort of cron jobs/processing on your front-end servers? Try to move as much as you can to background tasks such as sending emails. The intervals may seem random, but it can be a result of things happening depending on your job settings. 9 am every day may not mean what you think depending on the cron/task options. A corollary - move things to back-end servers and pull queues.
It's tough to give you a good answer without more information. The best someone here can do is give you a starting point, which pretty much every answer here already has.
By making at least one instance permanent, you get a great improvement in the first use. It takes about 15 sec. to load the application in the instance, which is why you experience long request times, when nobody has been using the application for a while

Best implementation of turn-based access on App Engine?

I am trying to implement a 2-player turn-based game with a GAE backend. The first thing this game requires is a very simple match making system that operates like this:
User A asks the backend for a match. The back ends tells him to come back later
User B asks the backend for a match. He will be matched with A.
User C asks the backend for a match. The back ends tells him to come back later
User D asks the backend for a match. He will be matched with C.
and so on...
(edit: my assumption is that if I can figure this one out, most other operation i a turn based game can use the same implementation)
This can be done quite easily in Apple Gamecenter and Xbox Live, however I would rather implement this on an open and platform independent backend like GAE. After some research, I have found the following options for a GAE implementation:
use memcache. However, there is no guarantee that the memcache is synchronized across different instances. I did some tests and could actually see match request disappearing due to memcache mis-synchronization.
Harden memcache with Sharding Counters. This does not always solve the multiple instance problem and mayabe results in high memcache quota usage.
Use memcache with Compare and Set. Does not solve the multiple instance problem when used as a mutex.
task queues. I have no idea how to use these but someone mentioned as a possible solution. However, I am afraid that queues will eat me GAE quota very quickly.
push queues. Same as above.
transaction. Same as above. Also probably very expensive.
channels. Same as above. Also probably very expensive.
Given that the match making is a very basic operation in online games, I cannot be the first one encountering this. Hence my questions:
Do you know of any safe mechanism for match making?
If multiple solutions exist, which is the cheapest (in terms of GAE quota usage) solution?
You could accomplish this using a cron tasks in a scheme like this:
define MatchRequest:
requestor = db.StringProperty()
opponent = db.StringProperty(default = '')
User A asks for a match, a MatchRequest entity is created with A as the requestor and the opponent blank.
User A polls to see when the opponent field has been filled.
User B asks for a match, a MatchRequest entity is created with B as as the requestor.
User B pools to see when the opponent field has been filled.
A cron job that runs every 20 seconds? or so runs:
Grab all MatchRequest where opponent == ''
Make all appropriate matches
Put all the MatchRequests as a transaction
Now when A and B poll next they will see that they they have an opponent.
According to the GAE docs on crons free apps can have up to 20 free cron tasks. The computation required for these crons for a small amount of users should be small.
This would be a safe way but I'm not sure if it is the cheapest way. It's also pretty easy to implement.

how many users in a GAE instance?

I'm using the Python 2.5 runtime on Google App Engine. Needless to say I'm a bit worried about the new costs so I want to get a better idea of what kind of traffic volume I will experience.
If 10 users simultaneously access my application at myapplication.appspot.com, will that spawn 10 instances?
If no, how many users in an instance? Is it even measured that way?
I've already looked at http://code.google.com/appengine/docs/adminconsole/instances.html but I just wanted to make sure that my interpretation is correct.
"Users" is a fairly meaningless term from an HTTP point of view. What's important is how many requests you can serve in a given time interval. This depends primarily on how long your app takes to serve a given request. Obviously, if it takes 200 milliseconds for you to serve a request, then one instance can serve at most 5 requests per second.
When a request is handled by App Engine, it is added to a queue. Any time an instance is available to do work, it takes the oldest item from the queue and serves that request. If the time that a request has been waiting in the queue ('pending latency') is more than the threshold you set in your admin console, the scheduler will start up another instance and start sending requests to it.
This is grossly simplified, obviously, but gives you a broad idea how the scheduler works.
First, no.
An instance per user is unreasonable and doesn't happen.
So you're asking how does my app scale to more instances? Depends on the load.
If you have much much requests per second then you'll get (automatically) another instance so the load is distributed.
That's the core idea behind App Engine.

Is a real-time multiplayer game using Google App Engine feasible?

I am currently developing a real-time multiplayer game, and have been evaluating various cloud-based hosting solutions. I am unsure whether App Engine fits my needs, and would be grateful for any feedback.
In essence, I want the system to work like this: Player A calculates round n, and generates a hash out of the game state at the end of that round. He then sends his commands for that round, and the hash, as a http POST to the server. Player B does the same thing, in parallel.
The server, while handling the POST from a player, first writes the received hash code to the memcache. If the hash from the other player is not yet in the memcache, it waits and periodically checks the memcache for the other players hash. As soon as both hashes are in the memcache, it compares them for equality. If they are equal, the server sends the commands of each player to the respectively other one as the http response.
A round like that should last around half a second, meaning two requests per player per second.
Of course, this way of doing it will only work if there are at least two instances of the application running, as two requests must be dealt with in parallel. Also, the memory cache must be consistent over all instances, be fairly reliable, and update immediately.
I cannot use XMPP because I want my game to be able to run within restricted networks, so it has to be limited to http on port 80.
Is there a way to enforce that two instances of the app are always running? Are there glaringly obvious flaws in my design? Do you think an architecture like this might work on App Engine? If not, what cloud based solution would you suggest?
I believe this could work. The key API for you to learn about / test would probably be the Channel API. That is what would allow back and forth communication between the client and server.
The next issue to worry about would be memcache. In general, it is reliable, but in the strictest sense we are supposed to assume that memcached data could disappear at any time.
If you decide that you can't risk losing the data like that, then you need to persist it in the datastore, which means you will have to experiment to make sure you can sustain 2 moves per turn. I think this is possible, but not trivially so. If you had said 1 move every 3 seconds I would say "no problem." But multiple updates to one entity per second start to bump up against the practical limit on writes per second, especially if they are transactional.
Having multiple instances running will not be a problem - you can pay to keep instances warm if necessary.

displaying # views on a page without hitting database all the time

More and more sites are displaying the number of views (and clicks like on dzone.com) certain pages receive. What is the best practice for keeping track of view #'s without hitting the database every load?
I have a bunch of potential ideas on how to do this in my head but none of them seem viable.
Thanks,
first time user.
I would try the database approach first - returning the value of an autoincrement counter should be a fairly cheap operation so you might be surprised. Even keeping a table of many items on which to record the hit count should be fairly performant.
But the question was how to avoid hitting the db every call. I'd suggest loading the table into the webapp and incrementing it there, only backing it up to the db periodically or on webapp shutdown.
One cheap trick would be to simply cache the value for a few minutes.
The exact number of views doesn't matter much anyway since, on a busy site, in the time a visitor goes through the page, a whole batch of new views is already in.
One way is to use memcached as a counter. You could modify this rate limit implementation to instead act as general counter. The key could be in yyyymmddhhmm format with an expiration of 15 or 30 minutes (depending on what you consider to be concurrent visitors) and then simply get those keys when displaying the page.
Nice libraries for communicating with the memcache server are available in many languages.
You could set up a flat file that has the number of hits in it. This would have issues scaling, but it could work.
If you don't care about displaying the number of page views, you could use something like google analytics or piwik. Both make requests after the page is already loaded, so it won't impact load times. There might be a way to make a ajax request to the analytics server, but I don't know for sure. Piwik is opensource, so you can probably hack something together.
If you are using server side scripting, increment it in a variable. It's likely to get reset if you restart the services so not such a good idea if accuracy is needed.

Resources