DataWarehouse - What is a good definition? - sql-server

Could someone give me a good, practical definition of what a data warehouse is?

I'm surprised no one has posted Inmon's definition:
A warehouse is a subject-oriented,
integrated, time-variant and
non-volatile collection of data in
support of management's decision
making process
From the same page you can pick up Kimball's definition:
A copy of transaction data
specifically structured for query and
analysis
I think that, unfortunately, data warehousing is a wide-ranging field. There is a lot of variety with very few standard paradigms, specifically I'm thinking of Kimball's dimensional modelling. Inmon does not have as a specific a methodology as Kimball's and thus some 3NF models may or may not conform to his principles.
Because Inmon has broadened his scope for what warehousing is meant to accomplish, it can encompass unstructured data. However, analysis of unstructured data is very different than traditional analysis.
As applied to SQL Server, typically the largest Data Warehouses on SQL Server are modelled dimensionally, because this lends itself well to the non-distributed, non-massively parallel model. Massively parallel systems like Teradata generally perform a lot better with 3NF models. These are still table-based systems with the various tables connected with foreign key constraints (perhaps not enforced, but at least logical).
Of course, we are also seeing NoSQL data processing systems like Map/Reduce which are not really databases at all in the sense of normalized, denormalized or non/poorly-normalized relational databases which we have had for 40 years now.

i just started with Datawarehousing and Buisness Intelligence and looking around the web you can find some interesting links :
Get Start With Datawarehousing
I think this two links could help you to understand the concepts of datawarehousing.
sorry, im new i can post only one link ^^
we're sorry, but as a spam prevention mechanism, new users can only post a maximum of one hyperlink. Earn 10 reputation to post more hyperlinks.

A database optimized for retrieval, in general denormalized data, usually a star schema(but could be snowflake) and uses dimensional modeling (fact and dimension tables)

While this is not an academic definition, it might serve as a practical one. A data warehouse is a collection of datamarts and will combine datasets across the breadth of an organization.
A datamart will contain datasets specific to certain portions of the business. In the datamart you will find fact tables, measurable pieces of information, along with dimensions, attributes of your measurable pieces.
A true data warehouse will have conformed dimension tables that can be shared across datamarts.
An example...
Your company may build a datamart around sales. And another datamart around human resources. If the customer dimension table is shared across both these datamarts, it would be considered a conformed dimension. All three of these entities together would make up a data warehouse.
As someone else stated you can find more detailed information by searching for Ralph Kimball's Data Strategies.

Definition : Datawarehouse is a database used for analysis purpose rather than for transaction processing
Check the below link for more informaion on datawarehouse
http://www.idatastage.com/datawarehouse/

Related

Star schema vs Snowflake Schema

In Business Intelligence perspective this is a common question but I am looking for a statistical answer.
Can we take decision depending on relational database to go for one of these design? I mean, is there any mathematical ratio among data volume that suits one of the schema?
Star schema stores de-normalised data while snowflake stores normalised data.
Usually, snow flake retains the referential integrity in the relational database, meaning you will have many dimensions linked by primary/foreign keys. On the other hand, the star schema will have a flat structure that merges all of the linked tables into one dimension.
Star schema is less complex and has much better performance than the snow flake schema. In BI perspective, star schema should be the way the go. Snow flake should only be used when necessary.
Star Schema Vs SnowFlake Schema..What to choose:
well this entirely depends on the project requirement and scenarios.
If we want to dive more into Dimensional Analysis then SnowFlake will be a good choice because as suggested in above answer, it mains referential integrity, does not contain data redundancy because of it normalised behaviour. For eg: if we want to find out who are the customers that are attracted towards a particular scheme started by the Bank.!!
If the purpose is more into Metric Analysis, then Star is the best option. For eg: if we want to find how much amount did the customer spend in a particular scheme weekly/monthly/quarterly/yearly basis..how much profit does the company made etc.
As suggested above, Star schema is less complex because of less no. of joins and runs much faster, query execution is much better as compared to snowflake.
But again, these are used according to the need of the project.
I hope this answer is helpful.
any suggestions, guidance is highly, deeply appreciated... :)
In relational databases there are fundamentally 2 types of schema (and i realise there are other edge cases): 3NF and Star schemas.
3NF are normally found in transactional systems and Star schemas in analytical schemas.
In a star schema it is possible to create snowflakes off a dimension but this is normally bad practice and should be avoided. If you have a very specific use case and you have the knowledge and experience to know that the only way to solve it is with a Snowflake then thats fine - however building Snowflakes because you don't know how to design a Star schema is not going to end well!
So a Star schema with a limited number of Snowflakes may be ok but a design that has a large number of Snowflakes is not a Snowflake schema - it's just a badly designed Star schema

How to design a database that can handle unknown reports?

I am working on a project which stores large amounts of data on multiple industries.
I have been tasked with designing the database schema.
I need to make the database schema flexible so it can handle complex reporting on the data.
For example,
what products are trending in industry x
what other companies have a similar product to my company
how is my company website different to x company website
There could be all sorts of reports. Right now everything is vague. But I know for sure the reports need to be fast.
Am I right in thinking my best path is to try to make as many association tables as I can? The idea being (for example) if the product table is linked to the industry table, it'll be relatively easy to get all products for a certain industry without having to go through joins on other tables to try to make a connection to the data.
This seems insane though. The schema will be so large and complex.
Please tell me if what I'm doing is correct or if there is some other known solution for this problem. Perhaps the solution is to hire a data scientist or DBA whose job is to do this sort of thing, rather than getting the programmer to do it.
Thank you.
I think getting these kinds of answers from a relational/operational database will be very difficult and the queries will be really slow.
The best approach I think will be to create multidimensional data structures (in other words a data warehouse) where you will have flattened data which will be easier to query than a relational database. It will also have historical data for trend analysis.
If there is a need for complex statistical or predictive analysis, then the data scientists can use the data warehouse as their source.
Adding to Amit's answer above, the problem is that what you need from your transactional database is a heavily normalized association of facts for operational purposes. For an analytic side you want what are effectively tagged facts.
In other words what you want is a series of star schemas where you can add whatever associations you want.

How are OLAP, OLTP, data warehouses, analytics, analysis and data mining related?

I'm trying to understand what OLAP, OLTP, data mining, analytics etc. are about, and I feel like my understanding about some of these concepts is still a bit vague. Information about these subjects tend to be explained in a very complex manner on the internet.
I feel like a question like this is likely to be closed since it's a very broad one, so I'll try to narrow it down into two questions:
Question 1:
After doing research I understand the following about these concepts, is it correct?
Analysis is decomposing something complex, to understand the inner workings better.
Analytics is predictive analysis on information that requires alot of math and statistics.
There's many type of databases, but they are either OLTP (transactional) or OLAP (analytical).
OLTP databases use ER diagrams, and are therefore easier to update because they are in normalized form.
In contrast, OLAP uses the denormalized star schema's and is therefore easier to query
OLAP is used for predictive analysis and OLTP is usually used in more practical situations since theres no redundancy.
Data warehouses is a type of OLAP database, and usually consists out of multiple other databases.
Data mining is a tool used in analytics, where u use computer software to find out relationships between data so you can predict things (e.g. customer behavior).
Question 2:
I'm especially confused about the difference between analytics and analysis. They say analytics is multidimensional analysis, but what is that supposed to mean?
I will try to explain you from the top of the pyramid:
Business Intelligence (what you didn't mentioned) is term in IT which stands for a complex system and gives useful informations about company from data.
So, BI systems has target: Clean, accurate and meaningful informations.
Clean means there is no tech problems (missing keys, incomplete data ect). Accurate means accurate - BI systems are also used as fault checker of production database (logical faults - i.e invoice bill is too high, or inactive partner is used ect). It has been accomplished with rules. Meaningful is hard to explain, but in simple english, it's all your data (even excel table from the last meeting), in way you want.
So, BI system has back-end: It's data warehouse.
DWH is nothing else than a database (instance, not software). It can be stored in RDBMS, analytical db (columnar or document store types), or NoSQL databases.
Data warehouse is term used usually for whole database that I explained above. There could be number of data-marts (if Kimball model is used) - more often, or relational system in 3rd normalized form (Inmon model) called enterprise data warehouse.
Data marts are tables inside DWH that are related (star schema, snowflake schema). Fact table (business process in denormalized form ) and dimension tables.
Each data mart represents one business process. Example: DWH has 3 data marts. One is retail sales, second is export, and third is import. In retail you can see total sales, qty sold, import price, profit (measures) by SKU, date, store, city ect (dimensions).
Loading data in DWH is called ETL(extract, transform, load).
Extract data from multiple sources (ERP db, CRM db, excel files, web service...)
Transform data (clean data, connect data from diff sources, match keys, mine data)
Load data (Load transformed data in specific data marts)
edit because of comment: ETL process is usually created with ETL tool, or manually with some programming language (python, c# ect) and APIs.
ETL process is group of SQLs, procedures, scripts and rules related and separated in 3 parts (look above), controlled by meta data.
It's either scheduled (every night, every few hours) or live (change data capture, triggers, transactions).
OLTP and OLAP are types of data processing. OLTP is used in transaction purpose, between database and software (usually only one way of input/output data).
OLAP is for analitical purpose, and this means there is multiple sources, historical data, high select query performance, mined data.
edit because of comment: Data Processing is way how data is stored and accessed from database. So, based on of your needs, database is set in different way.
Image from http://datawarehouse4u.info/:
Data mining is the computational process of discovering patterns in large data sets. Mined data can give you more insight view of business process or even forecast.
Analysis is a verb, which in BI world means simplicity of getting asked information from data. Multidimensional analysis actually says how system is slicing your data (with dimensions inside cube). Wikipedia said that analysis of data is a process of inspecting data with the goal of discovering useful information.
Analytics is a noun and it represent a result of analysis process.
Don't get so much fuss about those two words.
I can tell you about Data mining as i had project on Data mining. Data mining is not a tool ,Its a method of mining data and different tools used for data mining is WEKA ,RAPID MINER etc. Data mining follows many algorithms which are inbuilt in tools like Weka ,Rapid miner. Algorithms like Clustering algorithm , assosiation algorithm etc.
A simple example i can give you of data mining . Teacher is teaching science subject in a class by using different methods of teaching like using chalkboard,presentation,Practical. So now our aim is to find which method is suitable for students. Then we do survey and take students opinion 40 students like chalk board ,30 likes presentation and 20 likes practical method. So with help of this data we can make the rules for example Science subject should be taught by chalk board method.
To knw different algorithms you can use google :D.

What's the attraction of schemaless database systems?

I've been hearing a lot of talk about schema-less (often distributed) database systems like MongoDB, CouchDB, SimpleDB, etc...
While I can understand they might be valuable for some purposes, in most of my applications I'm trying to persist objects that have a specific number of fields of a specific type, and I just automatically think in the relational model. I'm always thinking in terms of rows with unique integer ids, null/not null fields, SQL datatypes, and select queries to find sets.
While I'm attracted to the distributed nature and easy JSON/RESTful interfaces of these new systems, I don't understand how loosely typed key/value hashes will help me with my development. Why would a loose typed, schema-less system be good for keeping clean data sets? How can I for example, find all items with dates between x and y when they might not have dates? Is there any concept of a join?
I understand many systems have their own differences and strengths, but I'm wondering at the difference in paradigm. I suppose this is an open-ended question, but perhaps the community's answers and ways they have personally seen the advantages of these systems will help enlighten me and others about when I would want to make use of these (admittedly more hip) systems instead of the traditional RDBMS.
I'll just call out one or two common reasons (I'm sure people will be writing essay answers)
With highly distributed systems, any given data set may be spread across multiple servers. When that happens, the relational constraints which the DB engine can guarantee are greatly reduced. Some of your referential integrity will need to be handled in application code. When doing so, you will quickly discover several pain points:
your logic is spread across multiple layers (app and db)
your logic is spread across multiple languages (SQL and your app language of choice)
The outcome is that the logic is less encapsulated, less portable, and MUCH more expensive to change. Many devs find themselves writing more logic in app code and less in the database. Taken to the extreme, the database schema becomes irrelevant.
Schema management—especially on systems where downtime is not an option—is difficult. reducing the schema complexity reduces that difficulty.
ACID doesn't work very well for distributed systems (BASE, CAP, etc). The SQL language (and the entire relational model to a certain extent) is optimized for a transactional ACID world. So some of the SQL language features and best practices are useless while others are actually harmful. Some developers feel uncomfortable about "against the grain" and prefer to drop SQL entirely in favor of a language which was designed from the ground up for their requirements.
Cost: most RDBMS systems aren't free. The leaders in scaling (Oracle, Sybase, SQL Server) are all commercial products. When dealing with large ("web scale") systems, database licensing costs can meet or exceed the hardware costs! The costs are high enough to change the normal build/buy considerations drastically towards building a custom solution on top of an OSS offering (all the significant NOSQL offerings are OSS)
The primary concern should be what do you need to do with your data. If you have a huge data set and are finding a traditional RDBMS to be a bottleneck then you may want to experiment with a schemaless or a a NOSQL solution.
Most environments that I am aware of using NOSQL solutions also use an RDBMS solution in some form or fashion. RDBMS based solutions are the norm where data integrity is extremely important and you need ACID transactions. However if your system is not highly transaction based but you need to scale up or scale out real quick, a NOSQL solution may be desirable.
Schemaless is great for two reasons:
Brain optimising intuitiveness of document storage
Resolves Sparse-Matrix and Entity-Attribute-Value storage problems.
I've used both SQL and No-SQL for production applications in Ruby on Rails. I'm not a database expert and I have to confess to googling ACID and similar terms as they're not familiar to me.
"Ah ha! Another know-nothing trend follower jumping on the latest bandwagon" you may say. But, actually, I'm really pleased with my decision to use MongoDB on our most recent 2 year old app and here's why...
The flip-side of brain-optimising intuitiveness was my experience with the Magento e-commerce system. I don't want to bash it because it served me well at the time but it really hit the processor hard trying to calculate the attributes for each product. The underlying reason was the Entity-Attribute-Value store of product data. Cache or be damned was the solution.
The major advantage to me is the optimisation in the only place that really matters - your own brain. So many technologies are critiqued on their efficiency in memory, processors, hardware and yet having a DB that's extremely intuitive to understand brings its own merits. We've found it quick to add features to our code because the database simply looks a lot like the real world we're modelling. When I've asked e-commerce clients to present me with their product list they will naturally tend to use Excel (think table store). The first columns are easy:
Product Name
Price
Product Type (
Then it gets harder and covered in notes, colour coding and links to other tables (yep.. relationships)
Colour (Only some products)
Size (X Large, Large, Small) - only for products 8'9'10, golf clubs use a different scale
Colour 2. The cat collars have two colour choices.
Wattage
Fixing type (Male, Female)
So it ends in a terrible mess of Excel tables that make no sense to me and not much sense to the people who work with the products day in and day out. We throw our arms in the air and decide to go through the catalogue and then it hits me! Wouldn't it be great if you could store the data as it appears in the catalogue!? Just collections of records on each product that just lists the attribute of that product. You can then pick out common attributes to index for retrieval at a later date. Of course, that's a document store.
In summary, document stores are great when you have a sparse matrix problem or objects that mutate their attributes over time. Having lived in a No-SQL world for 2 years, I can't think of a real world application that doesn't have those features because the world itself looks like a document store.
I've only played with MongoDB but one thing that really interested me was how you could nest documents. In MongoDB a document is basically like a record. This is really nice because traditionally, in a RDBMS, if you needed to pull a "Person" record and get the associated address, employer info, etc. you'd frequently have to go to multiple tables, join them up, make multiple database calls. In a NoSQL solution like MongoDB, you can just nest the associated records (documents) and not have to mess with foreign keys, joining, multiple database calls. Everything associated with that one record is pulled.
This is especially handy when dealing with objects. You can in many cases just store an object as a series of nested documents.
NoSQL databases are not schemaless; the schema is embedded in the data. They are properly called semistructured. In some KV data stores, however, the schema may even be embedded in code. The advantage of the semi-structured approach is two fold: flexibility in which columns are part of a row (one row could have 5 columns and another have 5 different columns, and flexibility in the characteristics of the columns (e.g., variable lengths)
Normally the attraction is that of snake oil - most people favourising them have no clue about the relational theorem and speak SQL on a level making professionals puke. No idea what ACID conditions are, ehy they are important etc.
Not saying they do not have valid uses.... just saying that mostly the attraction is people not knowing what they should know and making stupid conclusions. Again, not everyone is like that, but most developers favouring them are - not good in their understanding what a database system acutally is responsible for.

Star-Schema Design [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
Is a Star-Schema design essential to a data warehouse? Or can you do data warehousing with another design pattern?
Using star schemas for a data warehouse system gets you several benefits and in most cases it is appropriate to use them for the top layer. You may also have an operational data store (ODS) - a normalised structure that holds 'current state' and facilitates operations such as data conformation. However there are reasonable situations where this is not desirable. I've had occasion to build systems with and without ODS layers, and had specific reasons for the choice of architecture in each case.
Without going into the subtlties of data warehouse architecture or starting a Kimball vs. Inmon flame war the main benefits of a star schema are:
Most database management systems
have facilities in the query optimiser
to do 'Star Transformations' that
use Bitmap Index structures or
Index Intersection for fast
predicate resolution. This means that selection from a star schema can be done without hitting the fact table (which is usually much bigger than the indexes) until the selection is resolved.
Partitioning a star schema is relatively straightforward as only the fact table needs to be partitioned (unless you have some biblically large dimensions). Partition elimination means that the query optimiser can ignore patitions that could not possibly participate in the query results, which saves on I/O.
Slowly changing dimensions are much easier to implement on a star schema than a snowflake.
The schema is easier to understand and tends to involve less joins than a snowflake or E-R schema. Your reporting team will love you for this
Star schemas are much easier to use and (more importantly) make perform well with ad-hoc query tools such as Business Objects or Report Builder. As a developer you have very little control over the SQL generated by these tools so you need to give the query optimiser as much help as possible. Star schemas give the query optimiser relatively little opportunity to get it wrong.
Typically your reporting layer would use star schemas unless you have a specific reason not to. If you have multiple source systems you may want to implement an Operational Data Store with a normalised or snowflake schema to accumulate the data. This is easier because an ODS typically does not do history. Historical state is tracked in star schemas where this is much easier to do than with normalised structures. A normalised or snowflaked Operational Data Store reflects 'current' state and does not hold a historical view over and above any that is inherent in the data.
ODS load processes are concerned with data scrubbing and conforming, which is easier to do with a normalised structure. Once you have clean data in an ODS, dimension and fact loads can track history (changes over time) with generic or relatively simple mechanisms relatively simply; this is much easier to do with a star schema, Many ETL tools (for example) provide built-in facilities for slowly changing dimensions and implementing a generic mechanism is relatively straightforward.
Layering the system in this way providies a separation of responsibilities - business and data cleansing logic is dealt with in the ODS and the star schema loads deal with historical state.
There is an ongoing debate in the datawarehousing litterature about where in the datawarehouse-architecture the Star-Schema design should be applied.
In short Kimball advocates very highly for using only the Star-Schema design in the datawarehouse, while Inmon first wants to build an Enterprise Datawarehouse using normalized 3NF design and later use the Star-Schema design in the datamarts.
In addition here to you could also say that Snowflake schema design is another approach.
A fourth design could be the Data Vault Modeling approach.
Star schemas are used to enable high speed access to large volumes of data. The high performance is enabled by reducing the amount of joins needed to satsify any query that may be made against the subject area. This is done by allowing data redundancy in dimension tables.
You have to remember that the star schema is a pattern for the top layer for the warehouse. All models also involve staging schemas at the bottom of the warehouse stack, and some also include a persistant transformed merged staging area where all source systems are merged into a 3NF modelled schema. The various subject areas sit above this.
Alternatives to star schemas at the top level include a variation, which is a snowflake schema. A new method that may bear out some investigation as well is Data Vault Modelling proposed by Dan Linstedt.
The thing about star schemas is they are a natural model for the kinds of things most people want to do with a data warehouse. For instance it is easy to produce reports with different levels of granularity (month or day or year for example). It is also efficient to insert typical business data into a star schema, again a common and important feature of a data warehouse.
You certainly can use any kind of database you want but unless you know your business domain very well it is likely that your reports will not run as efficiently as they could if you had used a star schema.
Star schemas are a natural fit for the last layer of a data warehouse. How you get there is another question. As far as I know, there are two big camps, those of Bill Inmon and Ralph Kimball. You might want to look at the theories of these two guys if/when you decide to go with a star.
Also, some reporting tools really like the star schema setup. If you are locked into a specific reporting tool, that might drive what the reporting mart looks like in your warehouse.
Star schema is a logical data model for relational databases that fits the regular data warehousing needs; if the relational environment is given, a star or a snowflake schema will be a good design pattern, hard-wired in lots of DW design methodologies.
There are however other than relational database engines too, and they can be used for efficient data warehousing. Multidimensional storage engines might be very fast for OLAP tasks (TM1 eg.); we can not apply star schema design in this case. Other examples requiring special logical models include XML databases or column-oriented databases (eg. the experimental C-store)).
It's possible to do without. However, you will make life hard for yourself -- your organization will want to use standard tools that live on top of DWs, and those tools will expect a star schema -- a lot of effort will be spent fitting a square peg in a round hole.
A lot of database-level optimizations assume that you have a star schema; you will spend a lot of time optimizing and restructuring to get the DB to do "the right thing" with your not-quite-star layout.
Make sure that the pros outweigh the cons..
(Does it sound like I've been there before?)
-D
There are three problems we need to solve.
1) How to get the data out of the operational source system without putting undue pressure on them by joining tables within and between them, cleaning data as we extract, creating derivations etc.
2) How to merge data from disparate sources - some legacy, some file based, from different departments into an integral, accurate, efficiently stored whole that models the business, and does not reflect the structures of the source systems. Remember, systems change / are replaced relatively quickly, but the basic model of the business changes slowly.
3) How to structure the data to meet specific analytical and reporting requirements for particular people/departments in the business as quickly and accurately as possible.
The solution to these three very different problems require different architectural layers to solve them
Staging Layer
We replicate the structures of the sources, but only changed data from the sources are loaded each night. once the data is taken from the staging layer into the next layer, the data is dropped. Queries are single table queries with a simple data_time filter. Very little effect on the source.
Enterprise Layer
This is a business oriented 3rd normal form database. Data is extracted (and afterward dropped) from the staging layer into the enterprise layer, where it is cleaned, integrated and normalised.
Presentation (Star Schema) Layer
Here, we model dimensionally to meet specific requirements. Data is deliberately de-normalise to reduce the number of joins. Hierarchies that may occupy several tables in the Enterprise Layer are collapsed into a single dimension tables, and multiple transactional tables may be merged into single fact tables.
You always face these three problems. If you choose to do away with the enterprise layer, you still have to solve the second problem, but you have to do it in the star schema layer, and in my view, this is the wrong place to do it.

Resources